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PREFACE
1.

This book is concerned with a systematic investigation of the concept of

"measure-free" conditioning and its associated logic for intelligent systems. Its purpose is

to provide a foundation for inference in such systems. The basic problem is the

representation and evaluation of implicative statements in natural language, in a way

compatible with conditional probability. This longstanding problem involves three distinct

disciplines: natural language, logic, and probability. The results are organized in book

form here for the first time.

Two audiences are in mind, Artificial Intelligence researchers who are primarily

interested in reasoning under uncertainty in intelligent systems, and mathematicians in the

fields of probabilistic modeling, and logic. This diversity of audience requires that some

sections be tutorial and elementary in nature.

Specifically, this work bridges the gap between numerically based probabilistic

conditioning and the logic underlying implicative statements in natural language. This

problem has been addressed in the past, for example, by Boole, DeFinetti, Koopman,

Copeland, Schay, and Adams. Those efforts are incomplete, perhaps because of lack of

motivation by real world problems. In any case, work in this field has gone unrecognized

by the mainstream of researchers, particularly the work of Schay in 1968 on the algebra of

conditional events, which remains almost totally uncited in the literature.

[ The situation is different today. The problem is before us because of the need to

provide a firm foundation for probabilistic reasoning in intelligent systems; in particular,

V how to combine conditional information arising from disparate sources in expert systems
and how to compute it probabilistically. This is in line with the Bayesian approach to

probabilistic reasoning in intelligent systems (Pearl, 1988). Probability not only has a firm

mathematical foundation, but also the conditional probability operator captures a form of

non-monotonicity of common sense reasoning.

Our goal is a more complete and satisfactory theory of "measure-free" conditioning.

If the concept of "conditional event" can be formalized and a suitable algebra of operators

between such events be developed, then the resulting structure will have use in designing

inference rules in expert systems. With probability being the method of choice for

handling uncertainty despite the plethora of non-probabilistic procedures such as

Dempster-Shafer belief functions and Zadeh's fuzzy sets, it is natural to develop a logic of
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conditional events logic compatible with conditional probabilities. However, the basic

1" work here can be adapted and extended in various directions, such as to the fuzzy set

setting (Chapter 7), as well as to the Dempster-Shafer belief function setting (see, for

example, Dubois and Prade (1988)). This development is not to be confused with other

"conditional logics", such as that of Nute (1980) and Appiah (1985), which are not

j ~ compatible with conditional probability, nor with non-commutative extensions of Boolean

logic (Guzman and Squier, 1990). Our approach differs also from that of Adams (1975),

[who takes conditionals as primitives in natural language, while ours are mathematical

entities.

[1 This book is primarily concerned with theory. The reader is expected to be familiar

with basic probability theory, elementary logic, and elementary facts from ring theory.

However, the text is largely self-contained. The hope is that this book will trigger further

JI interest in both the theory and applications of this topic.

In conducting the research leading to this Monograph, we have benefited from

[1 discussions with various people. In particular, acknowledgements are expressed to Dr.

Philip Calabrese for his thought provoking treatise on measure-free conditional events

1 (Calabrese, 1987), and the lengthy personal communications e--changed on the topic.

Thanks are extended to Professors Geza Schay of the University of Massachusetts at

Boston, Kevin Hestir and Gerald Rogers of New Mexico State University, and to David

Stein of the Naval Ocean Systems Center at San Diego.

The first named author expresses his appreciation for support by Dr. Ralph Wachter

LI of the Office of Naval Research, Dr. Alan Gordon of the Independent Research Office,

NOSC, and the backing by the line management of the Naval Ocean Systems Center, in

Sparticular John A. Salamann, Jr.. and Michael C. Mudurian, both of the Command and

Control Department.

11i The other two named authors extend their thanks to their department head, Professor

Carol Walker, for her encouragement.

Finally, we are grateful to Valerie Reed for performing an excellent job in typing

this manuscript.

1. R. Goodman H. T. Nguyen and E. A. Walker

San Diego, California Las Cruces, New Mexico
0I""March 10, 1990 March 10, 1990

*1.



I.
CHAPTER 0

INTRODUCHON

F In this Introduction, we outline the motivation and objectives, as well as the main
contributions to the theory of measure-free conditioning.

1] 0.1 Motivation and objectives

j ~:This work addresses an anomaly involving probability and logic relative to the
interpretation of implicative statements, and the evaluation of those statements compatible
with conditional probability. One of our chief motivations is the need to formalize

[P rigorously the connections between conditional probability and the "hidden" logic of

implicative statements, such as production rules in expert systems and defaults in

common-sense reasoning. The purpose is to provide theoretical results for probabilistic

reasoning that will be useful in the design and evaluation of inference rules of such
systems.

We now describe the basic problem in some detail. Within the context of

logic-based formal methods in artificial intelligence, the space of propositions (facts,

evidence, information, and so on) is represented by an algebraic structure R known as a
Boolean algebra. The basic connectives among propositions, namely negation,

L conjunction, and disjunction correspond to operators on R, denoted ', A, and V,

respectively. When elements of R are uncertain, as is often the case in expert systems,

classical two-valued logic has to be replaced by probability logic, in which probabilities

play the role of truth values. However, our knowledge often contains uncertain

conditional information of the form "if b then a", where a and b are elements of R. These

conditional propositions are referred to as implicative statements, or conditionals. In

expert systems, these are "production rules". In order to make inferences from this type of
knowledge, it is necessary to develop an appropriate logic in which these conditionals can
be represented and manipulated in order to combine evidence, and in which an entailment

relation can be formulated. A quantitative approach to this starts with the quantification

of the strength or the "truth" of conditionals. For example, if the conditional "if b then a"
is written in the language of Boolean logic, then one can model it by material implication,

that is
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t _

" b-4a=b' Va.1.
If P is a probability measure on R, then P(b -4 a) = P(b' V a) can be used as such a

t- quantification. However, it is more reasonable to quantify the conditional "if b then a" by

the conditional probability P(a I b), which is clearly different from P(b' V a). Indeed

P(b' V a) = P(b' V ab)

= 1 - P(b) + P(ab) # P(ab)IP(b).

While this is consistent with probability logic for unconditional propositions, that is, for

Felements of R, one cannot represent the conditional "if b then a" mathematically.

Indeed, there is no counterpart of P(a I b) in logic. Logic lacks a conditioning operator

corresponding to conditional probability. Since material implication b -4 a is not

compatible with probability in the sense that

P(b -4 a) P(a Ib),

one might attempt to look for other operations f on R, Boolean or not, such that
P[f(ab)] = P(a Ib) for all probabilities P on R and all a, b e R with b 0. Such
attempts have been laid to rest by Lewis' Triviality Result. (See Chapter 1.) To model

I" "~measure-free" conditional events (a I b) compatible with conditional probability, one has I
to go outside of R. Thus (a I b) cannot be so modeled as an ordinary proposition.

* The first question then is to determine a suitable mathematical entity RIR for

-conditional events (aIb). Once such a model RIR is determined, for each probability P

on R, one has P extended to a "semantic evaluation" on R R.

L With the space R IR as the counterpart of R in the unconditional case, one then

proceeds to define connectives among conditionals, for example conjunctions

L (if b then a) A (if d then c)

whose result is another conditional in RIR. Such operations yield an algebra of

conditionals, extending the algebra of unconditional events of R. Choosing a correct

model RIR for these conditional events, and then choosing suitable logical operations on

those conditi.al events which extend those of R is the backbone of the problem. Once

such operations have been found, it is then possible to assig probabilities to compounds

of conditionals, since, for example, to evaluate

P((if b then a) A (if d then c)],

one merely has to carry out the operation A between the tvo cor.ditionals, yielding
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another conditional, and then evaluate P at that conditional. The algebraic structure of

RIR together with a probability on R extended to R IR forms the core for the

development of conditional probability logic extending that of probability logic.

1 In summary, the problem we are facing is this. For a Boolean algebra R(', A, V),

(1) find a "measure-free" conditioning map f from R x R to some space R IR so

I that Pf(a,b)] = P(a b) defines a function on R IR extending P on R;

(2) define logical operations AA, V on RIR extending the corresponding ones on

iR, and

(3) with conditional probabilities as semantic evaluations, develop a conditional

probability logic with syntax (R IR, AA, V).

I' No satisfactory solution to the problem seems to exist, even in the vast numerically

oriented literature treating conditioning in probability and logic. A solution entails the

pdevelopment of "conditional event algebras", and lies outside the scope of conditional

probability literature. This aspect has been considered by only a handful of researchers,

with no concerted effort being made in that direction. In this monograph, we present a

11 solution to the problem in the form of a conditional events algebra that is new, rigorous,

comprehensive, aad computationally tractable. The theory of measure-free conditioning

presented here can be used both as a basis for treating the problem of combining evidence

and as groundwork for further investigations into the connection between probability and

I logic.
We now return to the topic of inference rules in expert and intelligent systems as

one of the main motivating sources for posing the basic problem mentioned above.

Automated reasoning in intelligent systems is based on logical entailment (or logical

consequences or implication) in some logic. For example, in mechanical theorem proving

[j where first order logic is used, one of the usual ways to draw conclusions is through the

use of modus ponens, which simply says that if b implies a and b is true, then a is true.

Tnis means that a follows logically from (b -- a, b), and this translates into the syntax of

first order logic as (b -* a) A b _ a. Note that here < is precisely the logical entailment

fl relation of first order logic, and the modeling of "-", conditional information of the form

"if b then a", is via material implication mentioned above.

The situation in reasoning under uncertainty is more complicated. First, the

knowledge base consists of conditional information which is not known with complete

certainty. Second, human common sense reasoning is basically -non-monotonic' in

nature, whereas first order logic is monotone. This means that one can retract prior

conclusions in light of new evidence. From a logical non-numerical approach, the

modeling of "if b then a" should be investigated, and a non-monotonic logic for
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"conditionals" should be found. A well known example i- Reiter's (1980) logic of

defaults. If we want to treat uncertainty in conditional information in a more quantitative

way, various uncertainty measures could be used- The most poptdar numerical approach

1. is a Bayesian one, in which probabilities assigned to conditionals are conditional

probabilities. Suppose we symbolize conditional statements of the form "if b then a" or
"most b's are a's", or "usually birds fly" by (alb). Then the knowledge K is of the

form f(ailb) : i = 1,2, ...,n), and the evidence is of the form E = (e) i-,...,a, ei-< 9-

Non-monotonic reasoning is a logical entailment in a non-monotonic logic whose basic

objects are of the form (aib). Note that the elements of E can be identified as (ejjIf).

Instead of trying to model (a I b) as a mathematical entity compatible with conditional

probability (as a counterpart of non-conditional propositions with respect to uncondi-tional

probability), a well known approach (for example, Pearl, 1988) is to rely upon the

- so-called Adams' logic of conditionals (Adams, 1975), in which conditionals are not

modeled mathematically, but are taken as primitives in our natural language, and the

U probability entailment relation * is defined semantically. The lack of a conditioning

operator in lozic is mentioned in many places in Pearl's book. Moreove,, if a

" mathematical object (alb) could be defined, many problems in Adams' book could be

clarified. It is interesting to note that in 1968 Shay published a paper providing a proposal

for such an object (alb) and its algebra. Definitely, if objects ike (alb) can be

defined, then we can bridge the gap between probability and logic and reasoning can be

carried out at the syntax level provid.ng that conditional information can be combined-
[. Thus the goal is to develop a theory of "conditional events" compatible with

conditional probability, analogous to the role played by boolean algebra in the theory of

'F unconditional events and unconditional probability. Perhaps by the very nature of

physical systems and statistical problems, the new concept of conditional events might not

contribute anything new to them. This might explain why the papers by Copeland

published in the Proceedings of the Berkeley Symposium on Mathematical Statistics and

" Probability (1945,1954), or by Schay (1968) have been largely ignored- This is similar to

the case of quantum probability for quantum mechanics but not for ordinary probability

models (Gudder, 1988). The need for defining mathematically (measure-free) conditional

events appears also in the Theory of Measurement (Pfanzagl. 1971, Chapter 12). But

unike Copeland's approach, Pfanzagl proposed to use cosets of Boolcan rings to rpresent

conditiona events. However, his analysis was restricted only to each fixed (Boolean)

quotient ring. so that the algcbraic structure of the space of all possible cosets was not

inves-ig-ted. In particular, infercn,=e from a collection of condidiona- c cnis with different

antecedents was not formulated. But, as we will see in Chapter 2, the coset form for

conditional events is a correct one, and this will be derived axiomatically.
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0.2 State-of-the-art

The mathematical problem that we try to analyze in this book has been examined
'r over several decades, but is apparently foreign to probabilists as well as to engineers.

Most of the results were published in a scattered, unorganized fashion. However, there are

two books on the subject: those of Adams (1975) and Hailperin (1976), which are in logic.

Ii See also the book of Pfanzagl (1971, Chapter 12).
Prior to the era of AI, the problem came independently to the attention of the

[logicians Stalnaker (1968) and Lewis (1976), and as well as to Van Fraasen (1976),

Copeland (1941, 1945, 1950, 1954), Koopman (1940, 1941), and DeFinetti (1974). While

the discussion of the subject within the logic community remains somewhat active,

perhaps because of its philosophical nature, there was no reaction at all in the probability

I and statistics community. This is exemplified by the largely forgotten Copeland's papers

which aimed at providing more basic structures for probability theory and statistics,

complementing Kolmogorov's model. The framework that he proposed, that of

ri implicative Boolean algebras, was unsatisfactory, being far too restrictive, and examples

and applications were not readily at hand.
1! At the folklore or unpublished level, all of the attempts to deal with this problem

tO have been shown to be either patently wrong - such as identifying the probability of

material implication with conditional probability, or combining antecedents with only

union or intersection of antecedents being taken, or using a too restrictive or

computationally unfeasible approach (see Chapter 1).

The conditional event "literature" consists of only a couple of dozen papers as

opposed to the vast conditional probability literature. Wizhin this meager output, most

researchers have reached the point where they have agreed that conditional events should

be identified as principal ideal cosets of events of the original Boolean algebra of events.
[ One exception is Copeland and his colleagues, who used the "implicative" Boolean

algebra approach. But this required the original Boolean algebra to be infinite and of a

very special sort. Indeed, an "implicative" Boolean algebra R must be isomorphic to R1I

for all principal ideals I (Copeland and Harary, 1953a).

Except for Domotor (1969), Pfanzagl (1971) and Calabrese (1987), no justification is
L proffered by those even proposing cosets of principal ideals as models for conditional

events. On the other hand, Hailperin postulated that a conditional event should be an

.. element of a Chevalley-Uzkov ring of fractions of a Boolean ring, whose elements he then

shows are identifiable with cosets of principal ideals of the original Boolean ring. Thus he

could have skipped the ring of fractions step, cosets being a simpler notion. The idea is

not so bad: given two elements a and b of a ring, with b # 0, form a larger ring in

,.'hich a/b makes sense, that is, in which a is divisible by b. The notion is to model
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theconditional event (a b) by the element a/b. For Boolean rings, this cannot be done.

-trying to "divide" elements of Boolean rings results in trivialities. For example, in the

larger ring,

abb(alb) aba =ab ab(alb) =aa a.

II But ab is not- necessarily a. Further, using more general "rings of quotients" will also lead
nowhere. (See Section 1.2 for more details.)

[Among the few who have attempted to define operations among conditional events
with different antecedents - the identical antecedent case being similar to the

funconditional case - ofily Schay (1968) has justified his choice of (two proposed systems

of) operators, and that indirectly through an-abstract characterization theorem. (See Schay

(1968), Theorem 5.) However, these operators are chosen initially on an empirical basis,

and the characterization theorem appears more as an ad hoc rather than a natural avenue

for supporting them.

[It will be pointed out in Chapter 3 that both pairs of Schay's conjunction and
disjunction operators - and hence Calabrese's operators since they coincide with one

system of Schay's, violate the min-conjunction and max-disjunction and related

monotonicity properties of probability. Up to now, no one has derived operations on
(1 conditional events from first principles, and related explicitly the coset form of conditional

events to their potential operations. Even further, except for some of Mazurkiewicz's

rudimentary results (see Section 1.4), no connections have been established between the

coset form and conditional probability assignment of conditional events.
As we will see, there has been a proliferation of definitions for conditional events

and of operations between them. This is due perhaps to the fact that each approach is

based simply on some intuitive idea or some mathematical analogy rather than a

[systematic analysis of the problem from basic concepts, or a more axiomatic approach.
In summary, up to now no satisfactory first-principles approach has been taken

(J toward the exposition of a theory of conditional events. Our goal is such a theory.

0.3 Outline of main contributions

With the motivation and objectives described above, our effort will be directed first
toward the development of a mathematically rigorous and comprehensive theory of

measure-free conditioning. Specifically, a conditioning operator compatible with the
probabilistic conditioning operator is introduced into logic. The whole machinery of

Boolean logic is extended to "conditional Boolean logic". With this conditional Boolean
logic as syntax, the associated conditional probability logic will extend classical

probability logic. (See Hailperin (1984) and Nilsson (1986).) Since conditional
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probability logic- is a logic for implicative propositions (such as defaults in common sense

reasoning, and productions rules in expert systems), our work makes more rigorous, and

goes beyond, that of Adams (1975). Further, it clarifies theoretical issues in algebraic

I logic i the new direction of non-monotonic logics for A). The mathematical setting of

our conditional extension of first-order logic is an algebraic structure extending the

Boolean ring of first order logic, but is not itself a ring. This is however compatible with

the goal of achieving non-monotonicity in probability reasoning, more fundamental

structures surrounding the theory of-probability must be investigated, as has been pointed

out by Grosof (1988) and Pearl (1988). Thus, structures more general than Boolean rings

[ must be allowed. This situation ,s somewhat analogous to that of quantum logic (Gudder,
1988). This need to consider more general algebraic structures can also have some

interest for algebraists. For example, combining cosets of different quotient rings of a-

1i Boolean ring is possible in a natural way, and the resulting- algebraic structure merits

attention. The generality in which this phenomenon holds is not clear, although it does

extend, for example, to commutative von Neumann regular rings. (See Chapter 8.) A

related question of interest here which arises is to characterize commutative partially

ordered rings in which cosets of principal ideals are intervals.

The theory of conditioning developed in this book can be used to design inference

-rules in intelligent machines. Details of these applications to AI should be investigated.

At this point, we give some flavor of the theory. We begin by recalling the basics of

Adams' logic of conditionals (Adams, 1975), which has been popularized in the Al

I-community by Pearl (1988). Since uncertain implicative propositions in natural language

form the core of human and machine knowledge used in reasoning and inference, a logic

1: of these pTopositions, called conditionals, needs to be developed.

The main thrust of Adams' work is the development of a logic of conditionals,

compatible with conditional probability, that is, probabilities of conditionals are taken to

be conditional probabilities. See also (Stalnaker, 1968, 1970) and (Lewis, 1976). In

l a classical two-valued logic, the basic structure is a Boolean algebra R of subsets of a

universe of discourse f2. Thus propositions (events) are represented as mathematical
entities, namely as elements of R. From this, semantics, or truth values are attached to the

"possible worlds". However, Adams, apparently unaware of most of the previous work on

the subject, especially that of Shay (1968), took conditionals, as generalizations of

ordinary events, as primitives in natural language, rather than some entity generalizing

elements in a Boolean ring. (It is interesting to speculate on what Adams' book would be

like had he known of Schay's work of 1968.) Thus in Adams' conditional extension of

classical logic, the collections of conditionals exist only as a formal mathematical

structure. However, as human beings, we understand this primitive concept of
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conditionals, and hence, as in classical logic, proceed to build more complicated
, conditionals from the simple ones via logical connectives "and", "or", "not", and so on.

Now, these "conditional" connectives are extensions of those in ordinary unconditional
Spropositions. As in any extension problem, the solution is not unique. Any proposed

extension of the logical operations for conditionals forms only one possible logic amongst

all the possible ones. Adams proposed the following ones (1975, pp.46-47). Write "if b

then a" as a Ib. He made the following definitions, perhaps based on intuitive grounds:

(alb)' = (a Ib);

(alb) A (cld) = ((b' V a) A(d' V c))I(b V d);

(alb) V (cld) = ((a A b) V (c A d))I(b V d).

L These turn out to be precisely Schay's operations (Schay, 1968), which will be discussed

in Chapter 3.
The problem with assigning probabilities to compounds of conditionals is discussed

using Lewis' triv.ality result, which says that one cannot model conditionals as elements of

[the Boolean ring R, compatible with conditional probability (Adams, pp. 34-35; Lewis,

1976). Precisely, it says that one cannot associate with "if b then a" an element 9(a,b) of

R so that for all probability measures P on R,

P(9q(a,b)) = P(a I b) = P(ab)/P(b).

• There are some trivial exceptions. A proof of this fact will be reproduced in Chapter 1.

This means that the mathematical entity modeling conditionals must properly contain R.

This modeling of conditionals is the main thrust of this book.

Another point in Adams' work is his concept of "probabilistic entailment" (Adams,

1975, pp. 56-57). Since reasoning in intelligent systems is based on a logical entailment

relation in a given logic, it is not surprising that Pearl (1988) popularized Adams' work

because of this concept only. This concept of entailment is particularly suitable for

plausible reasoning in a quantitative way, that is, for conditionals (a I b) in which P(a I b)

* is high, such as "birds fly". Let K = {(aiIbi) : i = 1, 2, ..., n}. Then, by definition, K

implies (cld) if for each E > 0, there is a 8 > 0 such that for any probability measure

P on R, if P(a Ib) > 1 -3 then P(cld) > 1 - & In Chapter 6, we will return to this

,. concept to discuss its practical role in automated reasoning, especially in situations

different from plausible reasoning, as well as in the computational aspects of conditional

probability logic.

Now consider the problem of assigning a probability to a compound statement of the

form S = "if b then a or if d then c", where a, b, c, and d are in R. To do that, we
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need to model the statemcnt "if b then a" so that its probability is P(a b) and then we

must define the connective V (or) appropriately. The hope is that S will again be of the

form "if e then f', and P(S)= P(e L). By Lewis' triviality result, "if b then a" cannot

[7; be an element of R, so we are led to look outside R for a model. (See Chapter 2.) In

Chapter 3, conditional connectives are derived from algebraic considerations, and in

particular, the connective V is derived under reasonable assumptons to be

(alb) V (cId) = ((ab V cd) I(ab V cd V ba)),

where ab means the intersection or conjunction of a and b, and a V b means their

(3 union or disjunction. This operator corresponds to Lukasiewicz's three-valued truth table

for disjunction.

Another important issue is that of non-monotonic probabilistic reasoning in

intelligent systems. Its framework is as follows. Let T = < K,E >, where K is a

knowledge base and E is a set of evidence. K consists of a collection of implicative

propositions symbolized as (ailbi), i = 1, 2, 3, ..., n. For example, in the "penguin

triangle" example (Pearl, 1988), these are defaults. Note that in the Bayesian approach,

where the uncertainty in these defaults is taken into account in a more quantitative way, a

default rule of the form "most a's are b's" is modeled semantically as P(a I b) is "high".

I IE is a collection of factual propositions (evidence). Since elements in E can be viewed

as implicative statements which are implied by the tautology T (true), the reasoning

[ Iprocess will involve a logical entailment relation # in a conditional logic. Conditionals

of interest are of the form (cJE), where E stands for the Boolean conjunction of all

elements in E, and c is some event of interest. It is desired to kno', whether (c E)

[follows logically from K. In the case of the penguin triangle example, the e-semantics of

Adams can be used (Pearl, 1988, Ch. 10). It is necessary to be able to handle production

Ii rules in expert systems rather than just defaults in plausible reasoning, and also to treat the

problem at a syntactic level as in the case of classical first-order logic, where > is simply

the order relation < in a Boolean ring. Still this must be done compatible with

conditional probability evaluations. The main problem is the representation of K as a

p' whole. Putting all (uncertain) information in K together can be done in two different

ways: internal and external. If implicative propositions (a lb,) can be represented as

legitimate quantities, as we do in this book, and if logical operations among them are

available, then an internal combination of informatioz in K consists simply as taking

conjuhctions of all the (albi). An external combination strategy would consist of

forming a "product" of the (ai b'). (See Chapter 3 for details.) To complete the

reasoning procedure, a logical entailment relation > in conditional logic needs to be

supplied. It turns out that the order structure of Boolean rings can be extended suitably to
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F provide the desired . Moreover, relative to E, that is, to additional facts or evidence,

is non-monotonic. (See Chapter 8.)

- In summary, we first justify the coset form for measure-free conditional events by

using an axiomatic approach. A systematic investigation of logical operators among

conditionals, including those with different antecedents, is then carried out, resulting in a

" space of conditional events. Realizing that conditionals have three possible truth values, a

systematic study of three-valued logics leads to the conclusion that systems of logical

[7 operators among conditionals correspond precisely to various systems of three-valued

logics. A conditional probability logic is formulated, extending classical probability logic.

In a direction of generalization, we devote a chapter for conditioning in a fuzzy setting.

I ~0.4 Overview of the book

In view of the state-of-the-art presented above, we have looked again at the problem

in the last several years (Goodman, 1987, Goodman and Nguyen, 1988). The present

book is based essentially on our earlier unpublished work "A Theory of Measure-Free

Conditioning" (1987). Some of the results have already appeared in print, and =e here

augmented by new and improved procedures. In our view, it is not too early to provide a

comprehensive presentation of the theory of measure-free conditioning. It is our hope that
this book will stimulate further basic research in this area.

The basic program consists of nine parts:

(1) Formulation of the conditional event problem (Chapter 0).

(2) Extensive literature review pointing up the lack of a systematic investigation of
Li the problem (Chapter 1).

(3) Derivation of the necessary form that a conditional event must take, namely thatI-i of a coset of a principal ideal in a Boolean algebra of events (Chapter 2).

(4) Derivation of the appropriate operations on conditional events and development

of the calculus of these operations and the partial order extending the usual subset

relation of ordinary events, together with a justification of the proposed conditional

logic via three valued logic (Chapter 3).

-" (5) Establishment of relevant algebraic properties and a characterization of the

I._. algebra of conditional events, and an extension of the Stone Representation Theorem
to this conditional setting (Chapter 4).

(6) An analysis of the assignment of conditional probability to conditional events

(Chapter 5).
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(7) The development of conditional probability logic whose algebraic structure is

the conditional event algebra (Chapter 6).

1.] (8) The generalization of results to fuzzy events (Chapter 7).

(9) The investigation of iterated conditioning, and miscellaneous issues (Chapter 8).

11
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CHAPTER 1

I I A SURVEY OF PREVIOUS WORK ON (x)NDMrONAL EVENTS

[As stated before, investigations of conditional events and their operations have a

tong history, but are inot well known among probabilists, logicians, and computer

scientists, who make up a good deal of the Al community. Our lime.ature search revealed

that the topic has been considered, independently and at infrequent intervals of time, by

logicians and mathematicians, dating back to an idea in Boole's book (1854). Below we

[1 present the main approaches that have been taken, as well as duplications of effort that

have been made. As we will see, throughout the development of the mathematical theory

[of conlitional events and their calculus, there has been a proliferation of definitions of

these objects and of operations among them. This is due to the fact that each approach

has been based upon some intuitive idea or some analogy, rather than a systematic

analysis from a first principles or axiomatic approach. An axiomatic approach - which we

take here - should not only justify rigorously the correct forms for conditional events, but

should also shed light oi. the ones investigated so far. In the same vein, a reasonable

conditional logic should be able to be defended axiomatically. See Chapters 2 and 3.

1.1 Implicative Boolean algebras and Lewis' triviality result

L, The first approach considered for modeling conditional events is that of Cop-'i..,1:

(1941, 1945, 1950). See also Copeland and Harary (1953a, 1953b), Balbes (1970), and
ji Jonsson (1954).

Let R be a Boolean ring and let -i be material implication, that is, b -4 a is the

element b' V. If P is a probability measure on R, then in genelal

P(b -4a) * P(alb). (1)

The simple-appearing expression in (1) belies an interesting and significant history. First,

I' it can be improved as follows.

P(I -a) =P(b' V a) = P(b' V ab)

= P(b') + P(ab) = P(b') + P(alb)P(b)

= P(b') + P(aIb)[ - P(b')]
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= P(a b) + P(b')P(a" I b) >t P(alIb), (2)

with equality holding if and only if P(a'b) = 0 or P(b) = 1, a rather trivial case.

Popper (1963, p. 390, formula 22) was among the first to recognize a form of (2)

although earlier in 1956, Copeland (p. 42) implicitly used the inequality as a springboard

for his implicative Boolean algebra work. Calabrese independently recognized (2) in 1975

and later in 1987 (p. 201), motivating his development of conditional events outside of

the Boolean algebra of unconditional events R. It is tempting to seek another operation 0

[U on R such that P(ab) = P(a I b), that is, a binary operation 0 on R such that P(ab) =

P(aI b) is well defined. In other words, one would like to know whether "conditional

events" can be modeled as ordinary events, that is, as elements of R. It turns out that,
J except for trivial cases, the answer is negative (Lewis, 1976; Adams, 1975). Later

Calabrese (1987), unaware of 1 i ts' so called "triviality result", showed, using the normal

disjunctive form of Boolean polynomials, that such a 0 could not be Boolean, that is,

expressible in terms of union, intersection, and complement. Copeland proceeded directly

Uto the search for such a 0 , and consequently only obtained trivial cases. We now discuss

Lewis' Triviality Result, and then outline Chpeland's work on implicative Boolean

n! algebras.

S h Theorem 1 (Lewis' Triviality Result). Let R be a Boolean ring with more than four

elements. Then there is no binary operation 0 on R such that for all probability
measures P on R, and all a, b in R with P(b) > O,

P(aOb) = P(alb).

Proof. Suppose 0 exists. For a probability measure P on R and an element

r E R with P(r) # 0, denote by Pr be the probability measure on R given by

SPr(x) = P(rx)/P(r). Now, if a and b are in R and P(ab) # 0: P(a'b), then a and b
r

are P-independent. Indeed, since P(a), P(a'), and P(b) are all positive, we have

P(alb) = P(ab)

= P((aOb)a) + P((aOb)a')

= P((aOb) Ia)P(a) + P((aOb) Ia')P(a')

= P a(aOb)P(a) + P a(aOb)P(a')

= Pa(alb)P(a) + P a(alb)P(a')
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li = (Pa(ab)/Pa(b))P(a) + (P ,(ab)P a,(b))P(a')

[ = P(a) +0

= P(a).
jJ Since R has more than four elements, then we can find a 'and b in R such that

ab;&0a'b. Indeed, let b bein R,b *1, andlet aER with ab'. If ab=0, then
a<bY and ab0 a'b'. If ab*0, then ab 0*a'b else b<a. In any case, we

have elements a and b of R with ab * 0 * a'b and b 1 1. By Stone's Representation

Theorem, R is a subalgebra of the algebra ,(Q) of all subsets of some set C1 Let x, y

and z be elements of Q2 such that x e ab, y E a'b and z i b. Let P be a probability

1. measure on .9(2) with P((x)) = P({y)) = P({z)) = 1/3. Then P is a probability

measure on R such that P(ab) 0 * P(a'b). Now P(alb) = 1/2 while P(a) = 2/3 or

113, depending on whether or not z e a. Thus P(a I b) * P(a), and 0 cannot exist. a

The proof above is based on Lewis' original proof (Lewis, 1976). If R has four or

fewer elements, then the reader may verify easily the existence of a 0 satisfying the

condition in the theorem.

Ii. As a simple example when such a 0 does not exist, let Q = (x, y, z) and R =

(92). Define P by P(x)=P(y)=P(z)=113. Let a={x) and b= (x,y). Then

P(ab) 0 -P(a'b), and P(a I b) = 213, while P(a) = 113. Of course, this is essentially the
construction at the end of the proof just given.

When R is finite, there is another approach to Lewis' Triviality Result. If an

operation 0 on R existed satisfying P(aOb) = P(a I b), then P(a I b) can have no more

than #(R) values, where #(R) denotes the number of elements of R. This is simply
because aOb is an element of R. Thus, to prove Lewis' Triviality Result, it suffices to

construct on R a probability measure P such that P(a I b) takes more than #(R)

Li values. We will do a bit more.

Theorem 2. Let Q be a finite set, and let R be the Boolean algebra of all subsets of Q.
If 92 has n elements, n > 0, and P is any probability measure on R, then there are no

more than 3n - 2n+1 + 3 possible values for P(a I b). Further, then there is a probability

measure P on R such that P(a I b) takes on 3n - 2n+1 + 3 distinct values.

Proof. Since P(a I b) = P(ab)IP(b), to get the number of possible values of P(a I b)
not 0 or 1, we simply have to count the number of pairs (a,) in R, that is, the number

of pairs (a,b) of subsets of K2, with 0 < a < b. But this is the number
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i

1(2m- 2)(2 ) = (3n - 1) -2(2n -1) 3n -2n+1 + 1,

and the first part of the theorem follows.

If yi is any bounded measure on R, then P = p(9) is a probability measure on

R, and P(a I b) = P(ab)IP(b) = y(ab)4 (b). We will prescribe a bounded measure A on

R such that distinct pairs (ab) of elements with 0 < a < b give distinct yI(a)lf(b). A

measure is prescribed on R by assigning to each of its singletohs, that is to each element

cf , a positive number. We will have the desired measure, then if there are n positive
numbers a,, a2,. .., a such that if I J, K, and L are subsets of [1, 2,..., n} with

p c I c J and 4 c K c L, a, is the sum of those ti with i L, and (1, J) * (K, L), then

a/a1 * a,/taL. This construction is relagated to the following lemma. o

Lemma 1. Let n > 0. Then Ihere exist positive numbers a , q2,..., a such that if I,

J,K, and L are subsets of (1,2,.. .,n) with *clcJ and *cKcL, cl is the sum

[1 of those ai with i E 1, and (1, J) * (K,'L), then a * aVIaL.

Proof. We get the desired cds inductively. Let a, be any positive number greater

ij than 1. (There is some convenience in having a1 > 1.) Having chosen C4, d2, .... ,
--1, for 1 < i < n, let aj be a positive number with such that

i tG > (a~l + a2 +...- + Ci-1P .

[1 For example, if a, is taken to be 2, then q2 may be taken to be greater than (2)2 = 4,.

1 If taken to be 5, say then a3 then may be taken to be greater than (a 1 + a 2)2 = (2 + 5)2

= 49, and so on. Note that a, < q2 < ... < a. Now suppose that a/aJ = Va/, with

the I, J, K, and L having the properties noted above. Let m be the largest index such

that m is in one of the sets 1, J, K, and L, and is not in all four. There is such an m

H because (1, J) * (K, L). Let s = > mcti, which is 0, of course, if m = n. There are

really only three distinct cases to consider:

(a) m isin I,J, and L, andisnotin K;

(b) m is J and L, and is not in I or K;

U(c) m is in J and not in I or K or L.

Case (a) is the case that m is in exactly three of the sets; case (b) is the case that m is in

exactly two of the sets, and case (c) is the case that m is in exactly one of the sets.

Write 1 = u + am + s or u + s, depending on whether or not m E. Then aj = u + v +

arn + s, since m e J in all three cases. The number u is just I ai, where i E I and

i < m. This number may be 0. Now v = 0a, where i E J, i < m, and i EI. Similarly,

aK = x + s, since we never have to consider the case where m E K, and finally,
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a= x + y+ a. + s or x + y + s depending on whether or not mE L. An important

point is that u, v, x, and y are sums of ai's for some i's < m, so are small relative to

amn and to s, if s >0.

Suppose that we are in case (a), and that qaJ = q). This gives

(u + m + s)l(u + v + n +,) = (x + s)l(x + Y + m + s)

whence

(u + a + s)(x + y + am + s) = (u + v + am + s)(x + s).

LThis equality yields

ps(am- v+ y) y+ uam n.+ ~ (a) 2 = Xl

1This is impossible. All the terms on the left are 2! 0, and (c) 2 > xv since

r am > (al + q,2 + + n-)2 > xv.

L In case (b), we have the equality

b (u + s)l(u + v + am + s) = (x + s)l(x + y + a + s),

f- which yields

s(y -v) = x(x. + v)- u(c.+ y).

UThe left side s(y - v) must be 0. Otherwise,

S #0 ly - A >1,

and

L Ix(am + v) -u(-m + y)I < (a1 + a 2 +... +c) < ac,,. < sly -A.

[ But if s(y -v) = 0, then

• (x - u) = uy - xv,

whence x = u, from which it follows that y = v. But this means that I = K and J = L.

which is not the case.

In case (3), we have the equality

(u + s)l(u + v + a, + s) = (x + s)l(x + y + s),
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p which yields

s(a+ v -y) = uy -vx -xqr,

LIf s >0, the left side is positive, andthe rigtside is negative unless x=O. I hscs
s(tr+v-y)> uy since s> (a, + q2 +... + .2 > uy. If s=O, then xor=uy-vx,

so x = 0. But then K =,which is not allowed. 13

U There are a couple of comments that should be made about getting the desired c4

in the proof of Theorem 2. First, it is clear that they can be chosen to be integers, in

[which case the resulting probability measure will have all rational values. Secondly, that

such ai exist is no problem. Taking the ai to be algebraically independent (over the

rational numbers) will get the desired distinct P(alb). Being algebraically means tht

there is no non-trivial polynomial f with rational coefficients such that f(fa, q2,...,

a..) = 0. If azaJ = acrL for some (1) * (KL), then j K - a aL is a non trivial

polynomials in the o's, and is 0. That such algebraically independent sets exist is a well

known algebraic fact. A good reference is Hungerford (1974, page 311).

-L An immediate corollary of Theorem 2 is Lewis' Triviality Result for those R that

are the algebra of all subsets of a set with at least 3 elements. Indeed, in that case

!P - 2n+1 +3> 2n,Ii and since there is a probability measure P on R such that P(alb) takes n - 2r* + 3

distinct values, there is no binary operation 0 on R such that P(aOb) = P(aIb) for all a

and b in R.

Now suppose that R is any Boolean algeba with q elements, q > 4. Then R is a

subalgebra of the algebra 5(4) of all subsets of a finite set 91 with at least three

elements. As we have seen, there is a probability measure P on .91(2) taking distinct
values P(alb) not 0 or 1 for every pair (ab) with 0 < a < b. Ile restriction of P

[!I to R is a probability measure on R, and taking b = 1 yields q distinct values for
P(a b), counting 0 and 1. As in the proof of Lewis' Triviality Result above, there are

elements a and b in R with ab-O -a'b, and b V 1. Thus P(ablb) is yet another
value, yielding more than q values of P(alb) for elements a and b of R. This

[ irrplies Lew s" Trivialiy Result for any finite Boolean algebra with rore than four

elements. It is not clear how our theorem can be used to prove Lewis" Triviality Result for

infinite R.

The theorem also shows that if R is the algebra of all subsets of a set with n

elements, then any model S of the space of conditional events that is compatible with

probability must have at least 3n - 2n+1 + 3 elements, and if R is any finite Boolean
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algebra such a model must be larger than R.

The key fact in all the above is the existence of a probability measure P on the

Boolean algebra of all subsets , (9) of a finite set K. The existence of such a P is a

trivial consequence of the existence of algebraically independent real numbers, as we have

U' noted. To actually construct a measure, as we did in the lemma, yielding the desihed

probability involved a bit of arithmetic, but an elementary prs6ription was given for the

numbers needed.

F Following is an alternate proof of the existence of such a probability measure on

these special finite Boolean. algebras. It may have some independent interest. We are

going to show that if R = P(Q), with Q finite, then there is a PO on R such that PO

is one-to-one on the set

[(a, b) : 0- a < b, a, b e R),

that is, whenever 0 ;aI < b1 , 0 o a2 < b2 and (a ,, b,) * (a2, b2 ), then we have

P0 (al 1 b1 ) # Po(a2 Ib2 ). We will carry out the proof of this by induction on #(Q).

Specifically, we are going to show that, for each n > 1, there is a probability measure P

O on Rn = .9(2n ), where a n = 10)1, ..., a.O), such that

#[Pn(alb) : a, b e Rn, Pn(b) > O) = 3n 2n+ + 3.
n n n

For n = 1, 0 = {01}, and R1 = [0, 09). Let P, = 31, that is, P1 (0)=0,

PI(oi) = 1. We have

#{Pl(alb) : a= 0, 91 ;b = o1) =2 = 3 -22 +3.

For n = 2, 922 =o 1 , 2 }, and R 1 0 {9 , w2, (Coll 02 ))} Denoting as usual

the Dirac mass point probability at (o by 3 V, let P2 = (113)301 + ( .2 We have

T 1 {(a , b) :0 a < b) = {( wj O , 1' 2 )' ( 02' 1 P1 ' 0 2}) }

and
an P2(01co1) = P2(0102) = P2 (O91 1092 ) = (0o21 a)

=P2(011  ' 02}) = o

P2(W1 iIO) = P2(0)2 10)2) = P2 (I9)I c2}a{ o0 2)2))= ;

• t'2~~(0o), j,a)2}= 113 # 213 =P2c2{9,c2)
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1 hus 2 (a b) a, b R, b 0 =4 = 32 -23 + 3.

L Note that PI, P2 are both one-to-one on R1 , R2, respectively, and take rational values in

[0, 1]. ,

Assume that up to n, there is Pn :Rn -40,1] oftheform

[n = a)J

where the r s are distinct positive integers,

U Sn =Y rn
n j=1 rj

" such that

#(Pn(ab) :a, b e Rn, b * 0}= 3n -2 n+1 + 3.

Consider Q n = (oh, ... Define

A Pn+i( j) =rjIsn+, j =1, ...,n+ 1; Sn+1 j, r

: and r+l is to be determined. Let 0 a1 < b1 , 0 o a2 < b2 and

a,, a2 , bl, b2 e Rn+i, (al, bi) 9 (a2 , b2 ).

I.' Now
Q (b, -v1 b2) v b'bS.

K ~ ~~~~n+1 =(~b)b$

if n+i e b'b , then %+l a,, bi, i=1, 2; and

Pn+i(aIbi) = Pn+i(ai)/Pn+i(bi) = ( X, rJ)/( ( r.)

=P n (aibi), i=1,2.

Thus, by hypothesis of induction,

P n+ l(al I bl) " Pn+ 1l(a2 V2

iL, when

"n+1 b'b2

for any choice of integer r+l different from the r's, j = 1, 2, ... ,n.
n+ Ji
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Consider next the case where (on+, e bI v b2 . A partition of bI tub 2 is

(aa 2 , ala~bj, ajb, a'jba 2 , a'bb 2, ajbb$, bja 2, b.a-b2 )"

1[.: To express the fact that %n+1 e a, or l ai, we write

L ai = a, 0 uAl 1 •n+1

p for Ai = fn+1 or 0, respectively. Similarly

abi  
b 0  uo A i,2  On+ ,

a i,o& bioe R Rn.

Define iA.~
1 if Ai,] = Q n+I

ij o if A. = 0

and

{ fk:wkEai,o)

rk .i. (k:cokebl~o)

We have

P n+1 (a, I bi) = Pn+1 (ai)lPn+1 (bi)

_ [Pn+I(ai,o + "iPn+l(a~n+l)]1'IP n+1(bi1 0) + 'ri,2Pn+1(o.)+1)I

=[ai + r, lrn+i][U3i + 'i,2rn+1]
Thus

P n+1 (al I bl) = Pn+1 (a2 I b2)

if and only if rn+1 satisfies

.: (**) Ar+i + Brn+i + C = 0
where

A = 1 ,1 2,2 Ti,2 2, I

B =2,2,1 + r,,l 2 - l -2,i[3
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C = 2 -

Our proof will be complete if for each pair (a1, b,), (a2 , b2) the coafficients A, B,

C cannot be all zero, since then either A * 0 or B 0, and hence the quadratic equation
(**) will have at most two solutions. Let Jn+l denote the set of all such solutions for all

possible pairs (a1 , bl), (a2 , b2 ). Obviously, Jn+1 is finite. It suffices to choose

to be a positive integer not in Jn+l and different from all the r's, j 1, 2, ... , n.

. The last point to show is:

A = B = C = 0 is impossible.

L For this purpose, suppose

A= B= C=0.

Under this assumption, and in view of the hypotheses concerning ai bi, i = 1, 2, we note

that:

(i) 3> 0, i = 1,2.

(ii) If a1 = 0 then a2 = 0 and conversely.

In this case, we have

since1 B=O.

But -r,,, r21 > 0, since otherwise, a1 = a2 =0. Thus, rl = r21 = 1 and hence

.PL = But this will imply that b, = b2 and a1 = a2 , contradicting the hypotheses.

Hence:
0 O< a i<:5 P , i=1,2.

(iii) In fact, 0 < a. < pi, i = 1, 2. But this is equivalent to

0 < ai'o < bi o, i=1,2.

Now, C = 0 applied to this case implies

w h eiet a ) 1 = a2l2
.. which is equivalent to P n(alo Iblo) = Pn(a2o Ib2o). By the induction hypothesis,
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0 < alo = a 2o < bo =0
-that is

0< al '2 < P1 =

which implies, using B = 0,
al = a2 and bl=b2 ,

t ia contradiction again.

Thus, in summary, A =B = C = 0 cannot hold. o

-i Here is an alternate proof of Lewis' Triviality Result in the general case. For a

Boolean ring R a probability measure P on R, and a mapping f: R x R -. R, define

Yp= f Pb : Pb(.) = P(. Ib), b E R, P(b) > 0),

2(p = [(a, b) : a, b r R, P(b) > O, P(aIb) = 0 or 1} ,

' =[(a, b) a, b e R, P(b) > 0, for all c E R such thatfP

P(bc) > 0 and P c[fAa, b)] (fCalb,
and

yp (P= (a, b) :a, b e R, P(b) > 0, (a, b) e ?1p, and 0 < P(ab) =P(a)P(b) < 1)}.

Then

Indeed, let (a, b) E Vf,p\ Vp. Then 0 < P(alb) < 1. For c = 1, P(bc) = P(b) > 0, and

we have

P[f(a, b)] = P(aIb).
i Also,

,: Pail(a, b)] = Pa(a I b) = 1,

and

L a ,[f(a b)] = Pa, (a b) = 0,

whence

P(a b) = Pjf(a, b)] = P(af(a, b)] + P[a' .ffa, b)] =P(a),

that is, P(ab) = P(a)P(b), which means that (a, b) e Y
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As a consequence, if R is a Boolean ring having at least two elements a, b such

that 0 < a < b < 1, then there is no map f: R2 -4 R compatible with conditional

probability. Indeed, if such a map f exists, then choose P to be a probability measure

on R such that 0 < P(a) < P(b) < 1. We have

i ] (a, b) i 19p, (a, b) e Vfp

But

< P(a)P(b) < P(a) = P(ab) < ,

and (a, b) Yp, a contradiction. Thus no such map f exists, and Lewis' Triviality

[i Result follows. o

We turn now to Copeland's work. He looked for a mathematical operator

representing the logical connective "if' in R, analogous to division. That is, he apparently

had in mind modeling (a b) with the "fraction" a/b in R. With this he introduced the

following notion.

Definition. An implicative Boolean ring is a Boolean ring R together with an additional

I binary operation x satisfying the following, for elements a, b, c in R.

(i) ax(bxc) = (axb)xc,

(ii) ax(b + c) = axb + axc,

(iii) ax(bc) = (axb)(axc),

(iv) if axb = axc and a O, then b = c,

L2 (v) axl = a, and

(v) for every a and b with b 0, there is an element c such that ab = bxc.

Axioms (iv) and (vi) enable one to define an operator 0 by ab = bx(bOa), for b 0.

For b 0 0, the mapping Rb -4 R: rb -t bO(rb) is one-to-one and onto. Indeed,

bO(rb) = bO(sb) implies that

Ii bx(bO(rb)) = bx(bO(sb)) = rbb = rb = sbb = sb,

so that the mapping is one-to-one. Since

x(xxy) = (xxl)(xxy) =xX(1.y) =xxy, xxy_.x.

Thus bxr is an element of Rb and bxr -4 bO(bxr) = r since bxr = (bxr)b = bx(bO(bxr))

Thus the mapping is onto. This shows that every implicative Boolean ring # (0) is
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1I.

infinite, since R and Rb are in one-to-one corre.-pondence and Rb is smaller than R for

p b * 1 and for R finite. The mapping above is actually an isomorphism, so R is isomorphic
to Rb for every b * 0. This severely limits the usefulness of implicative Boolean rings.

Also, there do not seem to be any appealing examples of them.

By a "probability", Copeland meant any probability measure P on R such that

P(axb) = P(a)P(b).

." This makes ) compatible with such probabilities, since

Xi P(a b) = P(ab)IP(b) = P(bx(bOa>)IP(b) = P(b)P(bOa)IP(b) = P(bOa).

If all probabilities on R satisfied this condition, then Lewis' Triviality Result would imply

that there were no implicative Boolean rings except 0. Thus given a non-trivial
A implicative Boolean ring, only some probability measures on it are allowable, and

fl Copeland does not elaborate on that point.

Since the intention of Copeland was to stay in the ring R, the problem of
"conditional logic", that is, considering operations between conditional events, did not

arise. In any case, this approach through implicative Boolean rings seems futile. As

4 Pfanzagl (1971, Chapter 12) has pointed out, if (aIb) e R, then c A (aIb) admits no

semantic interpretation.

"" 1.2 Division of events

Although Copeland did mention that his operator "if' is somewhat analogous to
division, he did not elaborate further on this connection. It turns out that in Boole's basic

work (Boole, 1854), the problem of interpretation of division of propositions was

considered in some detail. However, since all elements except I in a Boolean ring are

zero divisors, there are bound to be some difficulties with this approach. We now outline

the idea of Boole and the follow-up work of Hailperin.
'4

Boole's division interpretation

In his basic work (Boole, 1854) which laid down the foundation of symbolic logic,

Boole explained vaguely an interpretation for division in a Boolean ring. For elements a

and b of R, the element a/b is defined to be an element of R such that (a/b)b = a. Now

such an element exists only if a 5 b. This difficulty can be circumvented by requiring that

a/b = abib. But then, instead of trying to solve the equation (ab/b)b = ab for abib, which

has many solutions, indeed the whole coset a + Rb', which of course is not an element of

R, Boole proceeded differently. Writing down the normal disjunctive form of a binary



26 A Survey of previous work on conditional events

I.

F' Boolean function as

f(a,b) -[f,1,)ab] V Of(,1)a'b] V [f(,O)a'b'l V [1,0)ab'],

he took formally f(a,b) = alb, leading to the expaxision

a alb = ab V (00)a'b' = aV (010)b',

since 111 = 1, 0/1 = 0, and 1/0 is not defined so that ab' has to be 0, that, is a5 <b. It

remains to interpret the indefinite "quantity" 0/0. Here is Boole's description of 0/0:

"The symbol 0/0 indicates that a perfectly indefinite portion of the class, that is, "some",
11none", or "all of its members are to be taken" (Boole, page 92). Translating Boole, aVxb'

is a candidate for c/b, for a : b and for any x in R, and of course a V xb' is precisely

the coset a + Rb'. As in the case of Copeland, no attempt was made concerning logical

operations among these "algebraic fractions".

Jevons (1879) objected to Boole's division on the grounds that it lacked clarity.

IPeirce (1867) retained Boole's operation of division and embellished it. MacFarlane

(1879) produced a very readable and improved version of Boole's idea. Unfortunately,

this work did not enter the main body of logic. In effect, the vacuum created by the lack

of division in Boole-Schroeder logic was filled by the introduction of other operations

within logic, such as material implication.

I Rigorization of Boole's technique

Hailperin (1976) analyzed thoroughly Boole's original work - especially his long

forgotten concepts of logical division and fractions of events. In fact, Hailperin came to

the conclusion that Boole's division is viable, provided sufficient rigor is used in

developing the idea. This was accomplished by forming a Chevalley-Uzkov "ring of

1. quotients" corresponding to "divide" by an event b (Uzkov, 1949). Indeed, since all the

elements of a Boolean ring R are zero divisors (except 1), the standard approach to rings

of quotients is not applicable. A way around this situation were given by Uzkov (1949)

for commutative rings with unity. If R is such a ring, then the construction of a ring of

quotients for R is as follows. Let S be a multiplicatively closed subset of R not

containing 0. That is, S c R and xy E S whenever x, y e S. An equivalence relation is

Sdefined on R x S by

(r, s) = (t, u)

if and only if there is an element x E S with
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x(st - ru) =0.

The set Rs of equivalence classes ris of is a commutative ring with identity under
the operations given by

rls + tlu = (ru + sOlsu

" and
(rls)(tlu) = rdsu.

When R is Boolean, then any element b e R with b 0 is a candidate for SIi above. Thus the ring R can be formed, and it is easy to see thatR(b)

p R{b) - Rb: alb -4ab

is an isomorphism, and of course

Rb-.RIRV ab-a + Rb

is an isomorphism as well. Thus Hailperin is led to the association of a conditional event
(aIb) with the coset a + Rb'. Hailperin actually took S to be R V b, the principal filter
associated with b, but this leads to the same ring of quotient, and hence both to R IRb',
Calabrese (1987), without having in mind conditional events as "quotients" in a Boolean
ring, proposed an equivalent definition, and hence one equivalent to the coset form. In

.: any event, for Hailperin, "fractional events" became cosets of principal ideals. In any
case, it allowed Hailperin to justify Boole's notion of fractional events. He went on to
consider these "fractional events" or "conditional events", as the set of all cosets of

principal ideals. In ring theory, it is not customary to define operations among cosets ofV different quotient rings. Because of this fact, Hailperin (p. 112-113) refers simply to the
collection of all conditional events as a partial algebra, that is, the operations + andB can be only defined on each quotient ring, but not between two cosets from two different
quotient rings. This is somehow surprising since it is precisely this point which is
important for a logic of conditional propositions. It is here that a good motivation for a
new problem in ring theory arises. The problem is this: What are the operations of
interest on the union of all quotient rings of R extending those on each fixed one? This
question is the topic of Chapter 3. Another point is that in his discussion concerning truth

tables, Hailperin (p. 127) did realize that conditional events have three possible truth

values. This fact was realized much earlier by DeFinetti (1964) and Schay (1968) who
defined conditional events precisely this way, that is from a semantic viewpoint (or

equivalently, by extending the concept of ordinary indicator functions of events or sets).
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Not only is this approach to conditional events through a three-valued logic equivalent to

the coset form of conditional events (see Chapter 2), but it sheds light on how to define

logical operations among conditional events, addressing the problem in ring theory

mentioned above. Indeed, it is well-known in classical two-valued logic that if
f! : (O, 1n_ 0 )

then there is a unique logical operation

such that

t[cp)laj, ..., an)] = flt(al)., t(an)),

fi where aiE R,i= 1,2 ... ,n and t stands for "truth value of." (See, for example,

Hamilton, 1978). It turns out that this result remains valid in a three-valued logic, as we

show in Chapter 3. Thus, not only will each system of operations on conditionals have a

logical interpretation, but more importantly, the above extension problem in Boolean ring

theory is solvable in view of existing systems of three-valued logics, for example those of

Lukasiewicz, Sobocinski, Kleene, and Bochvar (see Rescher, 1969, and our Chapter 3).

To complete a survey of Hailperin's work, it should be also mentioned that in

1; maidng "Boole's probability -igorous," Hailperin (footnote on p. 191) took the probability

of a conditional event, thdt is, of a coset, to be a conditional probability. This is indeed

[ well-defimed, and is precisely a "compatibility condition" with probability leading to an

axiomatic theory of conditional events (see Chapter 2). In the same vein, Hailperin

L(p. 195-197) proceeded to consider the concept of a "conditional events probability realm."

This is somehow s.iilar to Renyi's (1970) approach to conditional probability spaces, but

- in which there is a home for (a Ib) in P(a I b). See also our Chapter 5. However, since

the space of conditional events was not investigated far enough to reach a reasonable

[r algebraic structure (mainly due to the lack of operations amongst conditional events), no

new concepts were introduced beyond that. In Chapter 4, we will show that the space of

conditional events is a Stone algebra, generalizing Boolean algebras. In other words, the

f"partial algebra" of Hailperin is in fact an algebra with Lukasiewicz's three-valued logic

interpretation.

In light of the attempt to use the theory of "rings of quotients", the following is

pertinent, and should lay these attempts to rest. The only quotients that make sense in a

Boolean ring are those a/b where a < b. By a/b, we mean an element in R for which

* (alb)b = a. Indeed, if (a/b)b = a, then multiplying through by b gives ab = a, whence

a _5 b. If a < b, then taking alb = a gives an element whose product with b is a.
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Further, the ring R cannot be enlarged to another ring so that a/b is defined for a not < b.
Indeed, b'(alb)b = b'a = 0, and this is not the case unless a -b. So trying to enlarge R
so that division of events is possible in that enlargement is futile. Any divisions by

Selements of R that can be carried out in a larger ring can already be carried out in R.
More general statements are true. A "ring of quotients" of a ring R is a ring S and a
homomorphism f: R -+ S satisfying certain properties. If R is Boolean, then so is the

subringf(R) of S. Suppose one wanted to make an element b in R into a unit in S, that is,r] wanted S to be sich that fb) could be divided into everything in S (or even inf(R)). Then

inf(R), [A1)If(b)]f(b) = ff1), whence, multiplying through by fib) as above, we get fA1) =

f(b). Butffl) = I in S, being a homomorphism, softb) = 1. So the only way to make an
felement of R into a unit is to make it into the identity element. If a/b is to make sense for

every element a (or even just for a = 1), that is, if b is to be a unit, then the setting must

J be such that b = 1. What Hailperin did, in effect, was to go to the ring RIRb', or
equivalently, Rb where indeed b is the identity; b + RIRb' = 1 + RIRb', and b certainly is

Ii the identity of Rb.

Hailperin used a special Chevalley-Uzkov ring of quotients. There are many "rings
of quotients" in ring theory, two others being Johnson-Utumi ring of quotients and the
"classical ring of fractions." (See for example, Lambek, 1966, for background). This can

be seen as follows. We describe these two briefly for commutative rings.

V Let R be a commutative ring with unity 1. An ideal I of R is said to be dense
if, for all re R, rI = 0 implies r = 0. Afraction is a (module) homomorphism h •I -R

with domain I being a dense ideal. That is, if x, y E I, then

h(x + y) = h(x) + h(y),

and if x e 1, r E R, then

Ii h(rx) = rh(x).

Let Hom(I, R) be the class of fractions with domain I, and let F(R) be the union of

then Hom(I, R) over all dense ideals . For f E Hom(I, R) and g E Hom(J, R), let f = g
if f = g on I r) J. Then = is an equivalence relation on F(R). It is obviously reflexive

and symmetric. Transitivity is less obvious. For that, first note that the intersection of
dense ideals is dense. Indeed, for I and J dense, r(I n 3) = 0 imples that rlJ = 0, so

rI = 0, whence r = 0. Now let f E Hom(l, R), g E Hom(J, R) and h E Hom(K, R) with

* f=g and g=h. Let xEInK. For yEI.JrK,

f(x)y =f(xy) = g(xy) = h(xy) = h(x)y,
so
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(fx) - h(x))y = 0,[; and so

fix) = h(x).

Thus - is also transitive.

j ~With appropriate operations (see for example, Lambek, 1966), the set Q(R) of

equivalence classes of a ring, called the Johnson-Utumi complete ring of fractions of R.

Es Since Hom(R, R) -4 R :f-.f(1) is a ring isomorphism, Q(R) contains a copy of R. For a

non-zero divisor r e R, Rr is dense, and the Hom(Rr, R) for such r give rise to a

subring CL(R) of Q(R) called the classical ring of quotient of R. An element

( f E Hom(Rr, R) is identified with the "fraction" xlr, where fir) = x.

When R is a Boolean ring, the only non-zero divisor is 1, thus the only dense

i principal ideal is R itself, and CL(R) = Hom(R, R) is just R itself. This is the case if

R is finite, for example.

f If R is the ring of all subsets of a set 1-, then an ideal I is dense if and only if

x = V i = 1, since otherwise x' * 0 and x'I = 0. In this case, Q(R) is also just R
iWl

1 itself. To see this, for I dense, f e Hom(I, R) and j e 1,

flj) =fJT).1 = fl)( V i) = VfiQ)i =j( VfA),

so f is just multiplication by V flu) = x. This f is equivalent to h E Hom(R, R) given

by h(r) = rx, and Hom(R, R) is isomorphic to R as indicated above. More generally,

viewing R as a subalgebra of 2 a for some set Q, call R complete if R is closed

U under arbitrary unions. Then, as above, I is dense if and only if V = I, and Q(R) - R.
ieII It turns out that Q(R) - R if and only if R is complete (Lambek, 1966). There exist

non-complete Boolean rings, so in general Q(R) properly contains R.

Ii 1.3 Three-valued logic

Independently of each other, Reichenbach (1948, 1949), Schay (1968), DeFinetti

U(1972, 1974, Volumes 1 and 2), and Dubois and Prade (1987, 1990) considered the

modeling of conditional events from a logical viewpoint. They all viewed a conditional

event as an object with three possible "truth" values.

First, Reichenbach considered probability as being determined completely through

all standard logical operations over Boolean algebras of propositions and quantified

expressions, as well as through the adjunction of a distinct "probability implication"

operator P corresponding to P(- He also developed a calculus of probabilities (1949,
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* Chapter 3), and a related probability logic (1949, Chapter 10). Probabilistic conditioning
and logical implication were compared in two places: (i) in the discussions of basic
axioms for probability (1949, pages 54-57), in which probabilistic conditioning is argued

F; to be a natural, but because of the zero-probability antecedent case, tacitly modified
extension of logical implication, and (ii) in the use of P as a "quasi-implication" (1948,

table 4b, page 151; table 5, page 168; and pages 166-168). Reichenbach proposed that, in
place of classical logical implication, quasi-implication relative to three-valued logic
(0 = false, I = true, and I = indeterminate) was a more suitable operation. Informally, for
ain (0, 1, 1),

0 o§ aandl a

are defined semantically as P(a O) = I and P(a 1) = a, respectively. Reichenbach also

briefly considered an equivalent form of the concept of measure-free conditionals through
his "indeterminate" probability implication operator b -4 a via symbolic logic as

(3P)(b -4 a). (See Reichenbach, 1948, pages, 51, 52, 71, 72).
Schay (1968) asked "could (alb) be defined in a manner consistent with general

usage in probability theory, that is, so that P(ab)IP(b) may be interpreted as the

probability of (at b)?" Schay proposed to define (at b) as a generalized indicator func tion

11 on Q (here R is a Boolean ring of subsets of 11) where

1 if OE ab

(ajb)(c)= 0 if COE alb
u (unde fined) if o) E'.

Note that such functions are clearly in one-to-one correspondence with elerr nts of Rb, or
with elements of the quotient ring R/Rb' since such functions specify the subsets b and ab,

-and conversely.

In discussing conditional probabilities, DeFinetti made a remark about P(alb),II. saying that one can even talk about the probability of the "cv.nditional event" (alb)
(DeFinetti, 1974, page 134). He specifies this mathematical object on page 139 of that1) reference, as a "tri-event", corresponding precisely to Schay's notion. DeFinetti also
considered interpreting conditional events through a coset representation (1974, Vol. 1,
pages 267-269), but apparently did not connect this with Mazurkiewicz (1956) and others'
ideas on the same subject. (See Section 1.4 below.) Furthermore, DeFinetti even
considered briefly how one could obtain a "logical sua" of such conditional events (1974,
Vol 2, page 310) as sell as how double conditional events could be interpreted (1974, Vol
2, pages 327-328). In a related vein, DeFinetti broached the issue of "counterfactuals" and

verifications relative to conditional events, and concluded that compatibility constraints



32 A Survey of previous work on conditional events

were key to any further analysis of operations on such entities. But, other than brief

comments on the potentiality of how a calculus of operations among conditional events

could be developed -and was needed - no actual work in this direction was executed.

1 Bruno and Gilio (1985), inspired by DeFimetti's much earlier work, proposed an

abbreviated algebra of measure-free conditional events to produce "conditional

hyper-probabilities", which, in turn, were used to obtain some new factorization results for

Scozzafava's pseudodensities (1984). However, they did not attach any direct
pinterpretation t6 conditional events such as being cosets of principal ideals, as presented

in our work here. It turns out that their operations are identical to certain of those

f I proposed by Schay (1968) and Calabrese (1987). (See also Section 1.5.) Based on

DeFinetti's work, but independent of Bruno and Gilio, Darigelli and Scozzafi;, . (1984)

mentioned the lack of apparent attention paid to the domain of conditional probability

operators, that is , to conditional events. Their thesis was that careful consideration of

such could lead to improved interpretations of frequency data and the elimination of

certain confounding problems.

In discussing reasoning with uncertain information, Dubois and Prade (1987, fi-st

edition 1985), were led to consider a symbol like (-I') for a "non-traditional" logical
connective. (It should not be confused with Sheff!.s "binary rejection" (alb), which is
defined as a'b'). A truth value table for (alb) is established by observing that the truth

values t(alb) of (alb) are solutions of the equation r(ab) = Min[t(alb), r(b)) and so are

ggiven by r(alb) = 1,0 , or (0,1) according as t(ab) = 1 or t(a'b) = 1, or t(b) = 0. Here,

(0,11 is referred to as an "indeterminate". See also Dubois and Prade (1989, 1990).

Some additional efforts related to conditional events are these: Cox (1961)

L established an algebra of conditioning for a fixed common antecedent by formally

omitting the probability operator everywhere it appears in a conditional or unconditional

form. It appears that Cox implicitly recognized the need to establish measure-free

conditional events, but did not continue the development. The closest he came to the

point of introducing conditional events is in Chapter 1.3, corresponding to the measure-free

" chaining forms. (See Chapter 3 in this book.)

Popper (1961, Appendices IV* and V*) developed a postulate system for probability

L- which included conditional probability perceived as a numerical operator on ordered pairs

of primitives subject to certain algebraic relations within the probability argurnen'.s.

.* Furthermore,, he defined unconditional event: within the probabilities through

probabilistic equivalence, but unfortunately did not attempt to carry ou" a si milar

procedure for the ordered pairs within the probability operator, corresponding to

conditional events.

It should be mentioned also the very general work of Foulis and Randall (1971,
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1974) concerning the development of measure-free conditioning maps. Future efforts may
uncover useful connections between that work and ours.

Ii 1.4 Coset form of conditional events
In the attempt to define rigorously the concept of conditional events, compatible

with probability theory, except for Copeland, all previous esearchers came across, in one
form or another, cosets of principal ideals in a Boolean ring. This section is devoted to a
survey of more apparent work reiated to the coset form of conditional events. In historic
order, we survey the work of Koopman (1940), Mazurkiewicz (1956), Domotor (1969),fPfanzagl (1971), Hailperin (1986), and Calabrese (1987). Again, it should be noted that

all these efforts were carried out independently.
IKoopman's program was an investigation into "the axioms and algebra of intuitive

probability". The algebra part, that is, the definitions of logical operations among

pconditional events, was not addressed! The idea of intuitive or qualitative probability is

I Iwell-known: the primal intuition probability expresses itself in a partial order relation

among events. Qualitative (or comparative) probability is motivated by the desire to make

numerical probability measures compatible with non-numerical probability comparisons.

See, for example, Fine (1973), Fishbum (1983), Villegas (1967), Domotor (1969), and

Suppes (1973). Since information is basically conditional, "conditional events" should be

the basic building blocks rather than unconditional ones. While Rdnyi (1970) took this

viewpoint, from a numerical approach, extending Kolmogorov's model (see Chapter 5),
Koopman first proceeded from a measure-free attack. For a and b in R, an expression

denoted by (alb) is called an "eventuality". In a footnote (1940b, page 270), Koopman

mentioned that the notation (a I b) is used in a manner "close" to that of coset a + Rb',
without further elaboration. In fact, (a I b) is used as an "alternative notation" for a + Rb'.

From a qualitative viewpoint, the basic problem is that of comparison in probability of

eventualities. That is to say, a system of axioms for a partial order relation among
-- 1[conditionals should first be given. He focuses attention on the set R IR = vbR/Rb of all

cosets of all principal ideals, and postulates the existence of "n-scales". From this, upper

and lower numerical probabilities of conditional events were shown to exist. There is

some analogy here in the work of Dempster (1967) and of Shafer (1976). Conditional
probabilities themselves were next defined as common values of upper and lower

probabilities (when they happen to be the same). On conditional events with the same

antecedent, this conditional probability reduces to an ordinary probability measure. It

seems at this point that Koopman wanted simply to show that the numerical probability

that he introduced generalized the Kolmogorov model. He made no attempt to introduce

operations between conditional events with different antecedents and to consider the
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behavior of his new probability with re.spect to such operations. Instead, he gave a system

of axioms for orderings among "eventualities," that is conditionals with different

antecedents. See Section 3.5 for more discussion on Koopman's system of axioms for

,A intuitive probability.

The major contribution of Mazurkiewicz (1956, Chapter M) were to identify

conditional events as cosets of principal ideals and to note the consistency of the

assignment of probabilities to these cosets. That is, the assignment P(a + rb') = P(a I b)

[is well defined, 'being P(ab)P(b), so that the assignment P(a + Rb) = P(a I b) gives a

probability measure on the quotient ring RIRb' of cosets of the principal ideal Rb'.

Domotor (1969) also identified conditionals with cosets of principal ideals, but did

not introduce a partial order on it. He embedded RIR into a larger algebraic structure

equipped with a vector space structure, identifying RIR with DeFinetti's generalized

indicator functions. On this vector space, probability measures are viewed as linear

r! functionals. However, except for vector space operations, no attempt was made to

consider extensions of ordinary boolean operators.

In his book on the theory of measurement, Pfanzagl (1971) presented an approach to

the simultaneous measurement of utility and subjective probability generalizing

Morgenstern-Von Neumann's approach (Von Neumann and Morgenstern, 1947). The

syntactic concept of conditional events is essential in his work. Even Pfanzagl was aware

of Copeland's implicative algebra (1941), (but not of Koopman's work (1940) in which the

coset form was proposed for conditionals!); he did not adopt Copeland's concept of

F(measure-free) conditional events. Instead, he proposed the coset a + Rb' for (a I b).

But he stayed in a fixed (Boolean) quotient ring R/Rb' (that is, for a fixed b e R), so

that conditional events with different antecedents were not investigated. He considered

conditioning in R/Rb', that is, iterated conditional events of the form ((a I b) I (c I b)), for

b fixed, and this was defined simply as a coset of the Boolean ring RIRb', that is,
1

((alb)I(clb)) = (alb) + (R/Rb')(c lb)',

where

L (cIb)' = (c' Ib),

the "negation" of (c I b) in R/Rb'. (All operations involved are coset operations on

R/Rb'.) With the mathematical concept of (measure-free) conditional events, the notion

of "compound wagers" (conditional bets) can be formulated. For each fixed b e R, the

Boolean quotient ring R/Rb' is the collection of all conditional events (or conditionals)

with the same antecedent b. The conditional (alb) E R/Rb' can be used in the

representation of "compound wagers" (conditional bets) (Pfanzagl, 1971, p. 205-207) as

follows.
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Following Pfanzagl, a "wager" is a situation with a finite number of possible

"outcomes," exactly one of which is to occur. Let A = (a1 , ..., an} be the set of

. outcomes for a wager W. Which one of the a i's occurs depends on some uncertain

1event a e R. A "simple wager" Wa is defined to be a wager with only two possible

outcomes, say a, P. Specifically, wa = a if a occurs and P if a' occurs. In a logical
Sframework, wa can be viewed as a function on the set of maximal filters Q of R that|:

is, models of R. (See Chapter 6): For all o e Q.,

a ifa e o
WaC0)) P if a' e co.

A compound wager is defined to be a wager with

IA= (a,, a2' C3, a4),

depending upon (a I b), i.e.

a, ifab o

T W(alb)(0)=I a2 if a*b e o
a3 if ab' ec
a4 if a'b' e ) o.

For more detal, see Pfanzagl (1971, Chapter 12). See also Neapolitan (1990, p. 57) for

[. conditional bets.

Independently of previous work on the subject, Calabrese (1987) investigated a

conditioning operator in logic from an empirical viewpoint. His approach is algebraic,

1. and is based on a relation between logical deducts (or consequences) and filters in a

Boolean ring. (See Tarski, 1956.) For each b in R, the set of deducts of b is the filter

R V b r V b : r e R). This is precisely the coset b +Rb'. Noting

R Vb= (xr R :x:b } = x R :xb= 1.b)

and replacing 1 by any a in R leads to the class of a-relative deducts

(R V b)a = (x e R : xb = ab).

It is easy to verify that (R V b)a is the coset a + Rb'. A further critic of Calabrese's work

will be found at the end of Section 1.5 below.

1.5 Logical operations among conditional events

Schay (1968), Bruno and Gilio (1985) and Calabrese (1987) contain developments
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of logical operations among conditional events. (Although Adams (1975) did not define

conditional events mathematically, he did propose similar logical operations among them.

See Chapter 0.) A comparison with our operations will be given in Chapter 3.

Schay became apparently the first to attempt a full calculus of operations among

conditionals, especially among those with different anteceadents. Specifically, Schay

(1968, page 335) defined five operations as follows: For him the Boolean ring R is

explicitly a ring of subsets of some set 92, and for a, b e R, (a b) is a generalized indicator

function, as defined in Section 1.3, that is (aIb) : 92 -4 (O,u,I) with (aIb) = 0 on a'b, u on

b' and I on ab. Although not referring explicitly to DeFinetti's idea of conditional event

indicator functions, Schay did actually use this idea to help introduce his definitions for

logical operations.

Definition (Schay). For a, b, c, and d in R

(aIb)' = (a' Ib);

(alb) n (c Id) =(aclbd);

(alb) u (cld)= (ab V cdlb V d);

(alb) A (cjd) = ((b' V a)(d' V c)jb V d);

(alb) V (cld) = (a V clbd);
I ,

The operations (', r, V), as well as (', A, u) satisfy DeMorgan's Laws, as is easily

verified. Further, when d = b, u = V and A = A, and the operations reduce to the usual

set operations on the first component of (a I b), leaving the antecedent fixed. Since

a(a b) = (ab I b), one can restrict a < b, with no loss of generality. Then ' becomes

(ajb)' =(a'blb).
Schay did investigate the algebraic structure of the space of conditionals which turns

out to be equivalent to the set R JR of all cosets of all principal ideals (see Section 2.3).

He noted that it is a lattice with respect to (5 ,un) and with respect to (<_,V,A). He also

provided an axiomatic description of his structure, analogous to Stone's Representation

Theorem for Boolean algebras. (See especially his Theorem 5.)

Bruno and Gilio (1985), inspired by DeFinetti's work (but independent of Schay)

and motivated by some problems in statistics, also developed a calculus of conditional

events. Here, as with Schay, (aib) is identified as a generalized indicator function on i2.

The disjunction and conjunction operations of Bruno and Gilio are identical to Schay's u

and n, respectively, and their negation is the same as Schay's. They define an order S
relation among conditionals by (alb) _ (cjd) if a 5 c and b - d.

Independently of Schay, Adams and Bruno and Gilio, Calabrese used empirical
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guidelines to propose an algebra for these objects. His operations (I)', V, and A turn out

to be identical to Schay's ', u, and A respectively. Calabrese also investigated an

extension of Stone's Representation Theorem, and considered briefly higher order

conditioning. (As stated earlier unaware of Lewis' Triviality Result, Calabrese proved that

no mathematical form for conditional events which is compatible with probability, can be

f given in terms of a Boolean function into R.) A recent discussion of Schay's, Calabrese's,

and our work is in Dubois and Prade (1989, 1990). A more systematic comparison is

r given in Section 3.5.
For ease of reference, we describe below the essentials of Calabrese's work

(Calabrese, 1987).

E Starting from the viewpoint of a unified algebraic theory of logic and probability,

Calabrese argued for an additional operation (- I-) on a set of propositions represented

[ by a Boolean algebra R. This same argument has been advocated much earlier by

Copeland (Copeland, 1941), see Section 1.1. However, unlike Copeland, Calabrese came

to realize that a home for conditionals should be outside of R. Although works such as

Adams (1975), Hailperin (1976) were cited in the references of his paper, apparently

Calabrese did not notice a certain number of basic facts, namely Lewis' Triviality Result
(discussed in Section 1.8 of Adams' book), Adams' proposed logical operations for

conditional events (called conditional formulas) (Adams, p. 46-47), and the (equivalent)

I :~ coset form for conditional events in Hailperin's book. As such, he first reproved a special
case of Lewis' Triviality Result, namely that conditional events cannot be represented by

(1. binary Boolean operations on R (Calabrese, 1987, Theorem 2.2.1). Calabrese's approach

to defining conditional events was based upon the concept of filters in R. Specifically,

tj for a, b E R, the conditional event (a I b) is taken to be the equivalence class of elements

of R with respect to the filter R V b, where by definition a = c (under I = R V b) if

and only if ai = ci for some i E L But it is easy to see that the equivalence class of a

under I is precisely the coset a/I' where I' is the ideal defined by I' = (i' i E I).

Indeed, let a[I] denote (x : x E R, x = a under I). Observe that x E a[/] if and only if

x=ri' Vai forsome rER and irL But

x = ri V ai = ri' + ai = ri + a( + i') = (a + r)i' + a,

so that a[/] = a/l', where I' is an ideal. In particular, for I = R V b (the filter

generated by b), we have I' = Rb', and hence (a I b) = a[R V b] = a + Rb' = alRb', a

principal coset.

Calabrese went on to consider logical operations among conditional events by
logical considerations. First, arguing that the statement "if p then (if q then r)" is the

same as "if (p and q) then r," he identified ((rjq)Ip) with (rep A q). See also
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B Section 8.1. From that, as an axiom, he defined

((rlq) I (p Is)[] to b

(rlq A (pis)).

tAlso, as an axiom, the disjunction V is defined by

(pq) V (sir) = ((p A q) v (s A r)lp v r)

which is precisely Adams' "quasi-disjunction" of conditional formulas (Adams, 1975, p.
47).

Of course, since R IRb' is a Boolean ring, for each fixed b, the negation for (a I b){1. should be negation in this Boolean ring, that is to say (a I b) = (a' I b). The conjunction A
is derived from V via DeMorgan:

(q p) A (sir) = ((qlp)' V (sir)')'

=((q'jp) V (s'Ir))' =((q' Ap) V (s' Ar)Ip V r)'

= ((p' Vq) A(r' Vs)pVr)

= ((p q) A (r * sip V r),

where * denotes material implication. Again, this is Adams' "quasi-conjunction"

operation (Adams, 1975, p. 46).

L1.6 Notes

Below we include several intuitive or naive approaches to the problem of combining
conditional events, and of assigning probabilities to them. Although, they turn out not to
be satisfactory, either theoretically or practically, they are presented here for purpose of

1) completeness because of their apparent wide-spread use.

Li Product space approach.

First consider the case of equal antecedents, and consider (a I b) as primitives in our

,| .natural language, as in Adams (1975). If * :R 2 -4 R is a Boolean function, then for a

probability measure P on R, assign P((a Ib)*(clb)) = P(a*clb). (There is a problem

already with P being not necessarily well defined.) Now for (ai bi) where the bi are
not necessarily the same, one can try to reduce to the equal antecedent case, by getting a

"common denominator". One possibility for a common denominator is b = (b1 , b2 ) in
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*; I

R2. Identify al with a1 - (a1, 1), a2 with a2 = (1, a2 ), and (aIbi) with (aIb).

Then we are back in the equal antecedent case, but operating in the product space R2.
A 2Now for a probability measure P on R, one needs a probability measure P on R2 such

that

|'?iA A

P(aIb) =P(aIbi), i= 1,2.

But this requires for example,

P(A ,1 (bl'b2)) = A=
P((a,) (bb)) P(a1 b1 ,b2)IP(b1,b2) = P(a1 b1 )IP(bl).

Taking P to be the product measure meets this requirement, but the product measure is
unsatisfactory because it implies the independence of the events (a1 ,1) and (1,a2 ) in

A A A A
R?2. Another possibility is to require that P(b) = 1, and find such P with P(a,1)

A A

P(aI b) and P(1,a) = P(a I b2 ). Finding such P's with given marginals is an extremely
difficulty task, but has been solved in the case Q = DR, the field of real numbers. (Sklar,
1959, 1973). Sklar's Theorem says that if H is an n-dimensional cumulative distribution1 ~function with one-dimensional marginal distributions F,, F2, , Fn, then there exists an
n-dimensional copula C such that for all n-tuples (x1, x2, ... x,

H(x,x 2, ... x) =(F(xl), F2 (x2),.. n,Q

Conversely, if F1, F2 , ... , Fn are one-dimensional CDFs and C is an n-dimensional
copula, then H defined above is an n-dimensional CDF with marginals Fi .

Roughly speaking, for n = 2, a copula is a joint distribution for a pair of random
[ variables, each of which is uniformly distributed on [0, 1]. More formally, a two

dimensional copula is a mapping

C " [0,1] x [0,1] -4 [0,1]

Usuch that

(i) for all x E [0,1], C(x,O) = C(Ox) = 0, C(x,1) = C(1,x) = x, and
S,

(ii) for x. and yi re [0,I] with x, <_ x2 and y, y2, one has

9 C(xlYl) - C(xI'Y2) - C(x2'Y1) + C(x2,y2 ) : 0.

Note that C is continuous and non-decreasing in each argument, and that



40 A Survey of previous work on conditional events

Maxx + y-1,0 C(x,y) Min x,y) forx, y E [0,1]).

The above bounds are also copulas, termed minimal and maximal. copulas,

respectively. For the use of copulas in statistics, see Whitt (1976), Genest and MacKay

(1986a, 1986b), and Marshall And Olkin (1988). For the problem of determining joint

densities from given conditional densities, see Arnold and Press 1989).

Returning to the problem at hand, it turns out that the above intuitive approach in
A

the case of equal antecedents leads to a very restrictive form of P. Indeed, consider the

case (92, R) = (R, *, where T is the Borel a-field of the reals IL Consider (aiIb),
i= 1,2, ... , n, where a. = (-, s.], and denote by FA and Fp the CDFs associated with

."'P
A A
P and P, respectively. Then for b = b x b x ... x b,

An
FA ~si' ST . . ,sn =P Pix 1a1

A nA 
A 

AA

= = = P[r=nlaIb
[i= [ninl(ailb)] = P[ninlai I b]

S= Min :L . P((-,] lb) = ii- n Fp(si b),

where each marginal CDF of F^ is Fp(. b).
P

Now, when combining n conditionals as above, by Sklar's theorem, one chooses an

n-dimensional copula C, independently of the forms of the conditionals. The joint CDF
A

of P is then obtained once P and the bes are specified. The above form of a maximal

copula in the case of equal antecedents contradicts the independent choice of C.

Combination of antecedents approach

One way to combine conditional e jents (a I b) and (cl d) is via ordinary Boolean

operations on both components, for example,

(alb) V (cid) = (a V clb V d),
and

(alb) n (cid) = (a n clb n d).

The problem in doing this is that the first is not well defined (for example when

* (alb) = a + Rb'), and besides violates
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P[(ajb) V (cId)] >P(alb),

while the second violates

L P[(a b)o (c d)1 P(a b).

In fact, in the latter case, for 0 < a = c = bd with P(bd) < P(b) and P(d), one has

p P((alb) n (cld)) = P((alb) ( (aid))

=P((abI1bd) A (ad bd)) = P((bdl bd) n (bdlbd))

= P(bdlbd) = 1,
[! and yet

O < P(alb) =P(dlb) < a

O < P(cId) =P(bld) < 1.

Thus probabilities do not behave as one would like for either of these operations on

conditional events. However, it will be shown later that there is a way to combine

1. conditional events that extends the Boolean operations on ordinary events and so that

probabilities do behave properly with respect to that combination. In effect, this

approach is a non-cartesian product common denominator one.

[. Material implication approach

We end this section with some additional remarks about material implication and its

relation to conditional events. Material implication is the function f: R x R -i R defined

by f(a,b) = b" V a, also written b -4 a. Now material implication satisfies many desirable

ji properties, including the following, which are trivial to verify.

(1) f(a,b) =.ffabb) (consequent-antecedent invariance);

- (2) (a,b) = I if and only if b _ a (tautology);

(3) f(a,b)b = ab (modus ponens);

(4) f(ac,b) =.f(a,bf(c,b),f(a V cb) = f(a,b) Vf(c,b) (homomorphisms);

(5) f(a,bc)f(c,b) =f(ac,b) (chaining);

* (6) f(a,1) = a;

(7) f(f(a,b), c) = f(a,bc) (iteration);
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(8) f(b',a') = f(a,b) (modus tollens);

(9) f(a,b)f(c4d = f(ac, a'b V c'd V bd);

['1 (10) f(a.b) V f(cd) = f(a V c,bd);

(11) fla,b) + f(c,d) = ft(a + c)bd), ab V cd V bd V b'd').

J Also note that b -4 a is the maximum solution to the equation xb ab. The

function f is not one-to-one. For example, for any s < b V a, f(ss V a'b) = fla,b). The

1basic difficulty of material implication is that it is not compatible with probability, that is,

P(alb) * P(b - a) for all P for which P(b) 0 0. We have seen this before, and of

[course follows from Lewis' Triviality Result. In fact, as shown in Section 1.1,

u P(b -4 a) P(a b).

Again, see the discussion in Sections 0.1 and 1.1.

U

iJ
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Is CHAPTER2

nDERIVATION OF CONDTONAL EVENTS

1 This chapter is devoted to an axiomatic approach to deriving the mathematical

concept of conditional events. From intuitive properties capturing the basic aspects of

conditioning and the requirement that conditioning be compatible with probability, we
proceed to derive conditioning operators in logic, the values of which are conditional

I events. A canonical form for conditional events, namely cosets of principal ideals, is

obtained. The space of all conditional events so obtained forms the basis of our extensionrof logic to the conditional case.

2.1 Generalities

In view of Stone's Representation Theorem (see, for example, Halmos, 1963) and in

the spirit of symbolic (and algebraic) logic, the basic objects of our analysis are the

elements of a Boolean ring (R, +, ). A Boolean ring is a ring with identity such that

every element is idempotent, that is, for every element a,

a2 = a-a = a.

it follows from

1. (a + b)2 = a + b + ab + ba

=a+b

that ab =-ba. Takinga =b getsa =-a so thata + a = 0, that is, the ring has

characteristic 2, and is also commutative. The identity (or unit, or unity) of R is denoted

1, as usual. Two additional "logical operations" are defined on Boolean rings, V (called

L or, or union, or conjunction) and ' (called not, or negation, or complement), by

a V b = a + b + ab,

and

a' =1+a,

9 respectively. Disjunction, or intersection, or and, sometimes denoted by A, is taken to be

the multiplication on R. A partial order < is defined by a < b if ab = a. The generic

example of a Boolean ring is the set of all subsets of a set 91, with + and given by
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, symmetric difference (the "exclusive or") and intersection, that is, by 9
a + b = ab' u a'b

and
ab = anb,

where 'is complementation, and u and A are ordinary union and intersection of sets.

The identity 1 is the set 0 and the zero is the empty set 4. The partial order then is
[just ordinary containment of sets. This ring is called the ring of all subsets of 9, and is

particularly pertinent when 92 is a finite set. More generally, a set of subsets R of an

Barbitrary set 9 which is a ring under the operations given by

a + b = ab' V a'bI] and
a.b=aAb

is a Boolean ring, and Stone's Representation Theorem says that every Boolean ring is

isomorphic to such a ring of subsets of some set.

[I An important concept is that of an ideal of a Boolean ring R. More generally, an

ideal of an arbitrary commutative ring R is a nonempty subset I of R such that a - b
[ is in I for all a and b in Iand a -b is in I for all a in R and b in I. If R is

Boolean, then b = -b, and the condition that a - b is in I becomes simply that a + b

[j is in L So an ideal in a Boolean ring R is simply a nonempty subset of R closed under

addition and closed under multiplication by elements of R. An ideal is a principal ideal
~if it is of the form

Ra = {ra: r e R).

U[ Such ideals will be of particular importance for us.

For an ideal I of R, there is associated a ring RII, called a quotient ring, whose

.2 elements are cosers, that is subsets of R of the form

a+ I = (a + i: i I),

and addition and multiplication are given by

(a + 1) + (b + 1) - (a + b) + I

V and
(a + ).(b + ) =a-b + I,

respectively. It is an easy exercise to show that this makes RII into a ring, using the
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19 properties of an ideal I. Further, R1I is Boolean when R is Boolean. Here, as is the

custom, we are using + and for addition and multiplication in both the rings R and

R1I, but the context will make it clear where we are doing our adding and multiplying.

A mapping f from a ring R to a ring S is a homomorphism if for a and b in[". R,
fla + b) = fla) + f(b)

(a. b) = fa) "J(b).

[For an ideal I of a ring R,f(a) = a + I is a homomorphism from the ring R onto

the ring RI1, call the natural homomorphism of R onto RI. Two rings R and S are

[j isomorphic if there is a homomorphism from R to S that is one-to-one and onto. If f

is a homomorphism from R to S, then

AfKert = (a : f(a) = O)

" is called the kernel of f, and is an ideal of R. if f is from R onto S, then

F(a + Ker(f)) = f(a)

is an isomorphism from RIKer(t) to S. This is the first isomorphism theorem for rings.

That F is one-to-one from RIKer(t) onto f(R) is a special case of this. For any

mapping f defined on a set X, x t_ y given by f(x) = fly) is an equivalence relation.
Let F(x) denote the equivalence class to which x belongs, and let the set of equivalence

classes be denoted by XI[]f. This set of equivalence classes is a partition of X, the map

F : X -4 XI/(] is the natural map from X onto XI/W, and T1 : XI[] -.4f(X) given by

j ~ r(F(x)) = f(x) is one-to-one and onto.

If R is a ring and f is a one-to-one mapping from R onto a set S, then S can be

Imade into a ring isomorphic to R. For example, multiply in S by

A probability measure P on a Boolean ring R is a function P from R to the

closed interval (0,1] such that P(1) = 1 and P(a V b) = P(a) + P(b) whenever ab = 0.
This last property is the finite additiviry of P. There is a stronger property sometimes

required, called a-addirivity, but we will not need it. An atom in a Boolean ring is an

element a such that a0 and if b a, then b=a or b=0. The ring is atomic if

every element contains an atom. Finite Boolean rings are always atomic, and the ring of
Borel sets of Euclidean space is atomic. If a is an atom in a Boolean ring, then P
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defined by P(b) = 1 if a < b and P(b) = 0 otherwise, is a probability measure on R. If

a is not an atom, then P is not a probability measure, since for 0 # c < a, P(ac') = 0

F1] P(a) = P(ac), hence additivity fails. (See, however Section 2.2)

2.2 Conditioning operators

H As stated in Chapters 0 and 1, the main goal is to define objects of the form "a

given b", denoted (alb), for a and b elements of a Boolean ring R. Although the
t operation (- ) on R x R is termed measure-free conditioning, the derivation implicitly

involved probability measures. We wish to define (alb) in such a way that for any

[probability measure P on R, it is possible to assign the conditional probability P(alb)

to (alb) without ambiguity. In this spirit, the theory of measure-free conditioning

Ii developed here is compatible with probability theory. If this compatibility condition is

relaxed, then the door is open to other types of conditional objects. Lewis' Triviality

Result is established precisely within this probability compatibility condition. The

probability compatibility reqairement is appealing, for example, in expert systems since th

strengh of the production rule "if b then a" is usually quantified by the conditional

probability P(aIb). A typical example is the Markov random field model of Lauritzen

and Speigelhalter (1988). But measure-free conditional events compatible with probability

1,! can be used to investigate other non-probabilitistic conditioning as well The recent work

of Dubois and Prade (1991) is relevent.

In view of previous work on measure-free conditionals, it seexs that the coset form
is a reasonable one. In the following, we will arrive at this form from an axiomatic

approach.

We are going to search for maps f: R x R onto some space S which captures the

basic aspects of conditioning cormpatible with conditional probability evaluations. A value

(ab) of f will be called a (measure-free) conditional event. Our strategy is this. The

mapping f will be required to satisfy a set of axioms, or requirements. Since S is

I unlown, we will work on the domain R x R of f, examining the partition on it induced

by the equivalence relation (ab) =2 (cd) f J(ab) = f(cd). A version of f is then

1.1 obtained by assigning to each (ab) its equivalence class F(a,b). Note that

(R x R)I(] -.f(R x R) : F(ab) -f(ab)

is a one-to-one correspondence. Thus if all f satisfying the axioms induce the same

partition of R x R, then

F: R x R -, (R x R)IW]
b.
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is a canonical form for f. This program will be carried out by examining what each J(.,b)

must be like, for each b in R.

Any "conditioning" operator f should at least possess the following three properties.

(I) f(R,1) is a copy of R, that is, if.,1) is one-c .:,ae. This satisfies the

requirement that conditional events should be generalizations of ordinary events.

(2) For (a,b) in R x R, f(a,b) = f(ab,b). This says that conditioning a on b is

[ the same as conditioning ab (n b.

(3) For any probability measure P on R, Q((f(a,b)) = P(a b) defines an extension

U of P to Wp = {f(ab) : P(b) > 0).

That Q is well defined requires that for fla,b) and ftc,d) in Wp with

" fla,b) = f(c,d), one should have P(a I b) = P(c J d). For Q to be an extension of P also

requires that R be contained in Wp. A weaker form of (3) is this.

(3') Iff(a,b) = f(c,b) then P(ab) = P(cb) for all P for which P(b)> 0.

pL By Lemma 1 below. (3') is equivalent to

(3") If.f(a,b) = f(c,b), then ab = cb.

I It is reasonable to postulate that conditional events with different antecedents are

different, namely

Ui (4) If f(a,b) = f(c,d), then b = d.

A weaker form of (4) is

(4') if f(O,b) = f(c,d), then b = d, and if f(b,b) = f(c,d), then b = d.

In conjunction with (3) or (3'), (4') becomes

(4") If f(O,b) = f(c,d), then b = d and cd = 0, and if flb,b) = f(c,d), then b = d

and cd = d.

ij. I!We need some technical lemmas. To construct Dirac-like probability measures on

arbitrary Boolean rings, we spell out the following procedure.

Lemma 0. Let R be a Boolean ring. Let a,, a2, .... an be non-zero mutually disjoint

elements of R, and let a,, ar2, . . , o', be in [0,1] with I o; = 1. Then there is a

probability measure P on R such that if Vie j ai 5 b, and (vij ai) = 0, then P(b) =

SViE
J O.
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I.

Proof. By Stone's Representation Theorem, we may identify R with a subalgebra

of the algebra of all subsets of some set Q. Thus ai is a subset of 92. Since each ai is

nonempty, pick ak e aj, and let P = j a5ij, where 84 is the Dirac probability with mass

one at o, given by &,(b) = 1 if oA eb and 0 otherwise. It is easy to check that P is

a probability measure on R with the desired property.1.1
Lemma 1. Let R be a Boolean ring. If P(ab) = P(cb) for all probability measures P

on R such that, P(b) > 0, then ab = cb.

Proof. Suppose that ab cb. Then either (ab)(cb') * 0 or (ab)'(cb) 0.

[3 Suppose (ab)(cb') # 0. In view of Lemma 0, let o e (ab)(cb') # 0, o) e 02. Let P be

the Dirac probability measure on the set of subsets of 0 with mass 1 at co. Then

P(ab) = 1, P(b) > 0, and P(ab) * P(cb) = 0. 1 a

Lemma 2. Let R be a Boolean ring, and let a, b. c, d be elements of R with b 0 d.

The following are equivalent.

P(d). (i) P(a I b) P(c Id) for all probability measures P on R for which P(b) 0

(ii) Either ab - 0, or d9 _c, or ab5 <cd and c'd: <a'b.

Proof. Assume (ii). If ab = 0 or d < c, then obviously (i) holds. Suppose that

v ab cd and c'd <. a'b. Using those two inequalities and the fact that for t .0 and

L P(y) > P(x),

P(x)/P(y) [P(x) + t]/[P(y) + t],

we get

P(a I b) = P(ab)/P(b)

< [P(ab) + P(cd) - P(abcd)]/[P(b) + P(cd) - P(abcd)]

= P(cd)/P(b V cd) =P(cd)/P(ab V a'b V cd)

S= P(cd)/P(a'b V cd) < P(cd)/P(c'd V cd)

" = P(cd)IP(d) = P(cld).

Now assume (i), and that neither ab = 0 nor d < c. Then ab 0 and c'd 0.

* -First, we get ab < cd. If not, then (ab)(cd)' # 0. If (ab)(cd)'d 0 0, view R as a

* ,subalgebra of the algebra of subsets of a set K2, and let CO E E2 with co E (ab)(cd)'d. The

restriction of the Dirac probability measure P on the set of all subsets of 2 given by



Conditioning operators 49

*P(co) =1 has the property that

P(b) = P(d) = P(ab) = 1,

"J and P(cd) = O. Thus P(alb) = I while P(cld)=0.

IN If (ab)(cd)'d = 0, let y and o be elements of 92 such that ye (ab)(cd)' and

I) G c'd. Note that r w. Giving y and w each mass 1/2 yields a probability measure
on the set of all 'subsets of 9 whose restriction P to R has the property that P(a b) =

P(ab)/P(b) ; 1/2; while P(c Id) = 0.
The proof that c'd5 <a'b is similar. t

The following corollary is immediate.

Corollary 1. Let R be a Boolean ring and a, b, c, d be in R with b * 0 # d. The

following are equivalent.

(i) P(a b) = P(c I d) for all probability measures P on R for which P(b) 0
P(d).
PId)(ii) Either ab = cd = 0, or b : a and d < c, or ab = cd and b = d.

In view of Lemma 1, we see that if f satisfies (3), then it satisfies (1). Indeed, if

f(a, 1) =f(c,1), then P(a) = P(c) for all probability measures P on R, and hence a = c.

[I Thus ft.,1) is one-to-one on R, and R is identified with f(R,1). Also it follows from

Lemma 1 that if f(a,b) = ftc,d), then ab = cd. Thus (2) and (3) are the basic

[7 requirements for conditioning operators.

t| Theorem 1. If f satisfies (2) and (3), then for each b, RI[f(.,b)] = R/Rb'.

Proof. It suffices to show that Rb' and the kernel of f(,b) define the same

equivalence relation on R. Let a and c be in R. Then f(a,b) =f(cb) if and only if

f(ab,b) =f(cbb) (by (2)) if and only if ab = cb (by Lemma 1) if and only if a + Rb' =

c +Rb'. 0

Some remarks are in order. First, since f(R,b) and R/Rb' are in one-to-one

tI correspondence, in fact by a + Rb' -if(a,b), and RIRb" is a ring, f(R,b) becomes a ring

isomorphic to R/Rb'. Second, note that the mapping

RxR-4R/Rb' : (a,b) -i a + Rb'

does satisfy (2) and (3). See Section 2.3 for more details.
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HIt remains to describe all f satisfying (2) and (3). Theorem 1 gives a description

for such f locally, that is of each ft., b). Each fl-, b) induces the same partition on R,

namely into cosets of R/Rb'. However, two such f do not necessarily induce the same

partition on R x R. In fact, let f be defined on R x R by f(a,b) = a + Rb', and define

I; g by g =f except that g(ab) = R whenever a A b = 0. This does define a function. If

I f(a,b) =f(c,d) and a A b = 0, then c A d = 0. Now f(-,b) and g(.,b) both induce the

partition of R into cosets of Rb', but do not induce the same partition of R x R, as is

[obvious. Furtherinore, f and g satisfy (2) and (3). The problem is that g(ab) = g(c,d)

does not imply that b = d. If this latter condition is satisfied, that is, if we assume

U property (4) in addition to (2) and (3), then any two such fs are equivalent in the sense

that they determine the same partition of R x R. Condition (4) makes the ftR,b)'s be

mutually disjoint, and (2) and (3) make each be in one-to-one correspondence with

RIRb'. So any f satisfying' (2), (3), and (4) is equivalent to the map defined by

(a,b) -4 a + Rb'. Thus we have the following theorem.

Theorem 2. Let f satisfy (2), (3), and (4). Then f is equivalent to the map g defined by

[ g(a,b) = a + Rb'.

(1 If (2) and (3) are assumed, then something a little weaker than (4) will suffice.

Theorem 3. The the conditions (2), (3), and (4') imply (4). That is (2), (3), and (4') are
Li equivalent to (2), (3), and (4).

Proof. Assume (2), (3), and (4'). Suppose that f(a,b) = f(c,d). Then there is a

probability measure P on R such that P(b) # 0 # P(d). By Lemma 2, either (i) b = d,

or (ii) b5 <a and d5 <c, or (iii) ab = cd = 0. In case (ii),

f(a,b) =flab,b) =f(b,b) =f(c,d),

I'i and (4') implies that b = d. In case (iii),

If(a,b) = f(O,b) = f(c,d),

and (4') implies that b = d. Thus b = d in any case, and the theorem follows. a

2.3 Conditional events

The analysis of Section 2.2 has led us to a canonical form for conditional events.

This form will be used throughout this book.
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I "

Definition. Let R be a Boolean ring. For a and "b in R, the (measure-free)

conditional event "a given b", written (alb) is the coset a + Rb'. The space

[ eR RIRb " of all conditional events is denoted by R IR. It is sometimes referred to as

the conditional extension of logic.

j As we will see, the union UbeR R/Rb' above is a disjoint one. That is,

(RIRb') n (RIRd') = d for b * d. The function f(a,b) = a + Rb' satisfies all the

Erequisite properties discussed in the last section, including the property that f(a,b) = f(c,d)

implies that P(a Ib) = P(c I d). There are many "conditioning operators" which are not

"probability compatible". Examples are

f(a,b) = ab,

Ii and

pf(a,b) = (b -, a) =b V a.

More generally, take

P f(a,b) = ab v db"

for any d in R. Then for d = 0, we get f(a,b) = ab, and for d =1, we get fla,b)=

b' V a. These cannot be compatible with probability by Lewis' Triviality Result in

Section 1.1.

We will now look at some of the properties of (a I b). The function f(a,b) =

a+Rb' on R x R will be denoted by (.I). Thus (.I') is a function from R x R
onto UbER RIRb' = RIR.

(1) Ile function (- Ib) is a homomorphism from the ring R onto the quotient ring

R/Rb'. This quotient ring consists of all cosets of the form a + Rb', or (a I b), b fixed.

j These cosets partition R, that is, two cosets (a I b) and (c b) are equal or disjoint, and

every element of R is in some (a I b). In fact, a is in (a I b). Thus to check that two

cosets (a I b) and (c I b) are equal, it is enough to get one element in common. Note that

D (010) = 0 + R = R is a coset and leads to the trivial quotient ring R/R, a ring with only

one element.

(2) ("1) is one-to-one on R, and in fact is an isomorphism from R to

(R 1) = RIRO, which is identified with R itself, cosets of RO = (0) being of the form

a + (0) = (a).
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(3) Since

a+Rb =a+ ab'+Rb'

= a(l+b') + Rb'1,
= ab + Rb',

we get that (a b) = (ab b). This is just property (2) in Section 2.2.

(4) In R, a closed interval [a,b] consists of all c such that a < c < b, and recall
that x _ y if xy = x. When we write [a,b], we mean implicitly that a < b. Cosets of

principal ideals in Boolean rings and closed intervals are the same thing. In fact, (a J b) =

[ab,b -i a], or [ab,aVb'], and any closed interval

Ii (a,b] = (aIb' V a) = (abIb' V a).

To see this, for a + rb" in a + Rb',

ab(a + rb') = ab,

1 (a + rb')(b' V a) = a + rb'(b" V a) = a + rb'.

Thus (alb)c[ab,b" Va]. For ab<.c<_b' Va,

c = ab V (c(ab)') = ab + ca'b',

which is in ab + Rb' = a + Rb'. Thus (alb) = [ab,b'Va]. For an interval [a,b] =

[ab,b],

II(ablb" V a) = [ab V (b' V a),(b' V a)' ' (ab(b' V a))] =

V [ab,(ba') V ((ab) A (b' V a))] = [ab,(b A a') V (ba)] = [ab,b].

This fact that cosets of principal ideals and closed intervals are the same things

Sgives nothing new except the, perhaps important, realization of conditional events as

intervals (a,b]. Such an interval has a ready interpretation, in fact, a ready meaning - the

set of all elements of R between a and b. (Remember, a < b.) The interval [a,b] is

the conditional event "a given (b' V a)", and the interval [ab, b' V a] is the conditional

event "a given b", or (alb). Thinking of a conditional event as an interval has perhaps

- more intuitive appeal than thinking of it as a coset a + Rb'. In any case, it is convenient

- i sometimes to visualize a + Rb" as all sets between ab and a V b.
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The following property of cosets is fundamental enough for us to be called a

theorem.

I,' Theorem 1. The two cosets a + Rb and c + Rd' of R are equal if and only if ab=

cd and b = d.

IProof. If ab = cd and b = d, then clearly the two cosets are equal. Now suppose

that

[a + Rb' = c + Rd'.

gThen
ab = cd + rb',

so

abb = cdb + rb'b = ab = cdb.

Thus ab _ cd. By symmetry, cd < ab, whence ab = cd. Now

ab + b = cd + sd' = ab + sd',

so b' = sd', whence b' < d'. By symmetry, d b', so b = d. o

This theorem exhibits all the relevant properties of our conditioning operator (. ).

t. It asserts that (aib) =(cjd) if and only if ab = cd and b = d. In particular, if (a ib)
= (c I d), then

P(a It') = P(ab)IP(d) = P(c Id).

I. If a function f is equivalent to (-I*) in the sense of Theorem 2 of Section 2.2,
then f has the property that f(a,b) = f(c,d) if and only if ab = cd and b = d. Further,

any function f having this property is equivalent to (-j')-
There are two forms for conditional events that are equivalent to ours that are worthUconsidering. First is the form proposed by Schay (1968) and DeFinetti (1972). Let R be

a ring of subsets of some set 2, and define g on R x R by g(a,b)(a0) =1 if co is in
ab, 0 if co is in a'b, and u for co in t". That is, g(a,b) is a fiction from 2 to
(0,1,u), where the "u" stands for "undefined". Clearly g(a,b) = g(c,d) if and only if
ab = cd and b = d, so g is equivalent to (- I-).

Another form for conditional events that is equivalent to the coset one adopted here
is given by f((a,,b) = (ab,b). Clearly, f(a,b) = f(c,d) if and only if ab = cd and b = d.
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Thus conditional events are pairs (a,b) with a _ b. This form has the appealing

interpretation that conditional events are events, (a,b) being viewed as the event a in the

subring Rb of R, and this being viewed as different from the event a in the ring R.

F: That is, it is the pair (a,b). The space in which it is an event must be kept track of.

Another advantage of this realization of conditional events is that pairs are simpler to

visualize and to manipulate than cosets.

We remark that (a I b) can be realized as the set of all solutions x of the equation

[xb = ab, which is, of course all those elements between ab and a V b'. Using other

binary operations than (p(a,b) = ab, and considering the set of all solutions of the

equation q(x,b) = q)(a,b) gives other formulations of conditional events, and a way to

extend the concept to algebraic structures more general than Boolean rings. (See Chapter

8.)
Conditional events (alb), that is cosets a + Rb', can be expressed in terms of

filters of R. A filter in the Boolean algebra R is a non-empty subset F of R such that

if a and b are in F, then ab E F, and if ae F and a: <b, then b : F. The relation

between ideals and filters is that F is a filter in R if and only if F' = (1 + x : x E F}

Uis an ideal in R. Given a filter F, an equivalence relation is defined by a = b if there is

an element f E F with af = bf. Letting [a] denote the equivalence class containing a, 10 )

[I the relation with cosets is expressed in the equation W

[a] = a + F"

F; For principal ideals, the situation is particularly simple. For for b r R, the set

R V b = (r V b : r E R) is a filter. It just consists of all elements x such that b _< x.

Further, (R V b)' = Rb', and so in this case,

(alb) = [a] = a + Rb'.

Now that we have conditional events (a I b) idei~dfied as cosets a + Rb" of R, we

must establish logical operations between them, and this will be caarried out in Chapter 3,

where the ring operations of R will be extended to its cosets. However, conditional

fevents, as subsets of R, can be combined via union and intersection as well as other
ordinary set operations. These, of course, are not extensions of the ring operations of R,
but may be of some interest in their own right. The ordinary set operations on conditional

events with the same antecedent are of course %ell understood, since the cosets of an ideal

r" Rb' partition R. For example, the intersection of two such cosets is eithcr empty or the

*- cosets are identical. For cosets with different antecedents, the situation is a bit more

complex.
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Theorem 2. The following hold.

(1) (alb) n (cld) is the coset ((ab V cd) (b V d)) if abd = cbd, and is empty[ otherwise.
(2) (a b) c (cla) if and only if cd5 <ab and a V b c c V d'.

" (3) (a b) u (c d) is a coset if and only if one is contained in the other, or

ab<<.cdaaVb" <cVd',~or

cdab5cYd' <aVb'.

In the last case, for example,

, (ajb) u (c d) = (cdl(cd V a'b)).

n Proof. (1) If a + rb' = c + rd', then multiplying through by bd gets abd = cbd.
this latter equality implies easily that

ab V cd (a V b') A (c V d').

The coset (ajb) is the interval [ab, aVb'] and (c Id) = [cd, cVd']. It follows that

(aIb) n (cId) = [ab, a V b'] n [cd, c d']

= [ab V cd, (a V b') A (c V d')]

1. =((ab V cd)I(b V d)),

again using abd = cbd.
Viewing cosets as intervals immediately yields (2) and (3).

11

Li
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H CHAPTER 3

11 LOGICAL OPERATIONS ON CONDITONAL~ EVENTS

pIn this chapter, logical operations between conditional events are defined, extending
Boolean operations of the base ring R. As in most extension problems, such an extension

is not unique, and the one chosen demands justification. From a semantic viewpoint, the
system of logical operations derived here corresponds to Lukasiewicz's three-valued logic.
A comparison with other proposed operations is given in Section 3.5. A discussion of the

Ipossibiblity of deriving logical operations for conditional events in an axiomatic setting is
in Section 3.4. The analysis in this chapter is directed toward Boolean rings, with more

[1 general algebraic structures considered in Chapter 8.

tT 3.1 The extension problem

As established in Chapter 2, for a, b E R, by the conditional event "a given b", we
mean the coset a + Rb', and use the notation (aIb) for it. Since conditional events are

generalizations of events, with (all) corresponding to the ordinary event a in R, the

logical operations among them should be extensions of the ring operations. That is

(a 11) + (b 11) must be ((a + b) 11), and so on. There are various ways of doing this. It
has been noted at the end of Chapter 2 that ordinary set operations on conditional events

Iare not appropriate. The space R I R of conditional events is the disjoint union u RIRb',
with the union over all b E R. We have in each RIRb' the usual quotient ring operationsIi which come from the operations of R. What is needed are operations combining cosets
from different quotient rings, that is, combining elements from RIRb' and RIRd' with

d b -d, and of course with the result of such a combination being a coset of a principal
ideal. This is not a standard ring theory operation, and has been largely avoided. ForL example, Hailperin (1976) just called RIR a partial universal algebra (see, for example

Graitzer, 1968), and considered logical operations only between elements of the same
quotient ring. That is clearly unsatisfactory. We will define operations between any two
cosets of principal ideals, and investigate the resulting algebraic structure of RIR in
Chapter 4.

For any ring R, its operations + and - induce corresponding operations on subsets of
R. Namely, for subsets A and B of R,
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I.

A + B = (a + b a e A, b e B),

and

AB = ab a E A,be- B)

We have two other commonly used operations for Boolean rings, a V b = a + b + ab, and

. a" = 1 + a. These extend to set operations as well, namely -

A V B = [a + b + ab a eA, b eB),and

A' = [a' a E A)

A convenient fact, and one easily checked, is that for subsets A and B of R, DeMorgan's

laws hold:

(AB)' = A' VB',

and
(A v B)' = A'B'.

2L We have already been using set addition in writing down cosets: a + Rb' means

(a) +Rb', which is [a + rb' : r E R). Now coset addition in each quotient ring RIRb'

1: is just this set addition. Cosets of RIRb' are added by the formula

" (a + Rb') + (c + Rb') = (a + c) + Rb',

but this coincides with the set addition above since
!-

L (a + rb') + (c + sb') = (a + c) + (r + s)b'

" is in (a + c) + Rb', and the other inclusion is equally as easy to check. Further, this

addition is well defined - set addition is certainly well defined, and if

a + Rb' = x + Rb'

and

c + Rb' = y + Rb',

then

(a + c) + Rb' = (x + y) + Rb'.

These remarks for coset addition are valid for any ring and any ideal I, not just Boolean

rings and principal ideals Rb'.

It is not generally true that coset multiplication is set multiplication. Tnat is, it is
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not true for all rings that set multiplication of (a +1) and (b + 1) is ab + I, the product

of the two cosets (a + 1) and (b + 1). However, it is true for Boolean rings, and in fact

for commutative von Neumann regular rings. For Boolean rings, an arb.trary element of

(a + l)(b +1) is

1: (a + O(b +J) = ab + aj + bi + ij

with i and j in L This is clearly in ab + L On the other hand for

L ab +ke ab + I,

taking i = ka'and j = k + kba' puts ab + k in the form ab + aj + bi + ij. So coset

multiplication in Boolean rings is just set multiplication. This unusual fact suggests that

jperhaps set addition and multiplication are appropriate operations on any pair of elements

of R IR. Similar remarks hold for the set operations ' and V on R IR.

32 Conditional logical operations

Firstwe will show that RIR is closed under the set operations ", +,

multiplication or it, and V. This will give us an "algebra" of conditional events, and its

properties will be subsequently investigated. It is convenient to note first that for ideals I

I. and J of a Boolean ring R, the product IJ = (ij : i e , j E J) is indeed an ideal.

Clearly, InJ is an ideal, and InJcIJ. For x in IAJx =x-x isin IJ, so IJ=

In J. Since sums of ideals are ideals, the following theorem then implies that sums,

products, and disjunctions V of two cosets are cosets.

Theorem 1. Let R be a Boolean ring and let I and J be ideals of R. Then

(1) (a+ I)'= (a' +1),
(2) (a+f)+ (b+J)=(a+b)+I+J,

(3) (a + I)(b + J) = ab + bI + aJ + IJ,
(4) (a + I) V (b + J) = avb + b'I + a'J + IJ.

l Proof. For (1),

(a+1)' = ((a + i)' "i l}--

[(1 +a)+i:i el =a' +1.

(aFor (2),
,(a + 1) + (b +J) = (a + i + b + j: it r:,j e J)
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((a + b) + i +j ie I,j J) = (a + b) +I+J.

Part (3) is more difficult. An element in (a + I)(b + .1) is of the form

(a + i)(b + J) = ab + bi + aj + ij,

L which is clearly in ab + bI + al + IJ. The other inclusion is the difficult part Fst, we

will establish it for principal ideals. So let I = Rx and J = Ry. An element in

(a + Rx)(b + Ry) is of the form

(a + rx)(b + sy) = ab + asy + brx + rsxy,

and an element of ab + bRx + aRy + RxRy is of the formI:
~ab + btx + auy + vxwy.

Let z =vwxy + txb + ya+ ab. Then letting

r = (z - a)xy + tx(1 -y),

11 and
s = (I - b)xy + uy(1 -x)

puts ab + asy + brx + rsxy in the form ab + bx + auy + vxwy. This is a bit tedious

but straightforward to check. Thus we have

(a + 1)(b + J) = ab + bI + aJ + IJ

for principal ideals. For arbitrary ideals I and J, we need

a + bI + a + IJc (a + I)(b + J)

That is, we need an element of the form ab + bu + av + wx to be of the form

ab + bi + aj + ij,

t where i, u, and w arein I, and j, v and x are in J. Now

Ru + Rw = R(u + w + my),

as is easily checked, and similarly Rv + Rx = R(v + x + vx). Let

e = u + W + uW

and
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.9 f = v + x + vx.

Then ab + bu+ av + w is in. ab + bRe + aRf + ReRf, which, by the principal. ideal

case, is (a + Re)(b + .,, and which, in turn, is contained in (a + /)(b + J). This proves
part (3).

For (4) we use DeMorgan's laws and (3). We have

(a + 1) V (b + J) = [(a' + I)(b' + J)'

i =I + a'b + b'I + a'J + IJ = aVb + b'I + a'J + IJ.

fj Several comments are in order. We have, fcr example, the formula

I: (a + 1)(b + J) = ab + bI + aJ + IJ.

There is no question of the product (a + 1)(b +J) being well defined. It is just the

product of the two sets a + I and b + J. If representatives are changed, that is, if a is

replacedbyxandb byy suchthat a + I=x +I and b +J=y+J, then

(a + 1)(b + J) = (x + 1)(y + J) = xy + yI + xJ + IJ.

Similar remarks hold for the other operations. Since addition, multiplication and

disjunction on R are commutative and associative, their extensions to subsets of R are

I j commutative and associative. Multiplication and disjunction are also idempotent, that is,

= = x = x V x. In particular, these three binary operations on the set of all cosets of R are

both commutative and associative. Thus we can perform these operations on any (finite)

L number of cosets with the result independent of order or association.

The operations ', +, V, and A or multiplication were defined by extending the

" conesponding operations of R to subsets of R. Back in R, the operations satisfy the

following relations:
~~(1) x'= 1+. ,

(2) x + y =x'y V xy',

(3) (xy)' =x' V y' and (x V y)' =x'y',

(4) x(y V z) = xy Vxz,

* (5) x v (yz) = (x v y)(x v z),

(6) x(y + 7) = xy + xz,

(7) xVy=x+y+xy.

For cosets of R, only (1) through (5) hold, and those are easily checked using the

theorem above. We have already noted that OeMorgca's laws (the properties in (3)) hold
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for any subsets of JR. An example of the failure of (6) for cosets of principal ideals is

F given below, and (7) does not hold for the cosets a + R and 1 + Ra', where a 0. In

that case, we have

-+ ( +R) V (1 + Ra') = a V I + Ra',

(a+R)+(l+Ra')+(a+R)(1+Ra')=aV +R,

and

L aVI +Ra'*aVl+R,

since a 0.
Finally, Theorem 1 holds for commutative von Neumann rings with little change in

the proof. See Chapter 8.

[1 We turn now to specializing these results to the case where the ideals are principal.

In that case, we have the three binary operations, and the unary operation ' on R IR. We

. now change to the notation (a I b) for a + Rb'. The following theorem states the basic

facts about the operations on the space R IR of principal ideals.

Theorem 2. The following hold.

(1) (a b)' = (a' Ib),
(2) (alb) + (cld) = (a + clbd),

(3) (a b)(cld) = (acla'b V c'd V bd),

(4) (alb) V (cld) = (a V clab V cd V bd).

'Proof. The proof of (1) is easy. For (2),

(alb) + (cjd) = (a + Rb') + (c + Rd') = a + c + Rb' + Rd'.

Now we have observed in the proof of the previous theorem that Rx + Ry = R(x V y).

fThus

Rb' + Rd' = R(b'Vd') = R(bd)'.

P For (3),

(a I b)(cld) = ac + cRb' + aRd' + Rb'Rd',

using (3) of the previous theorem. We need the ideal Rb'c + Rad' + Rb'd' to be the

principal ideal R(a'b v c'd V ba)'. It is the principal ideal R(b'*c V ad' V b'd'). It is

•. routine to show that

(a'b V 'd d) = b'c V ad' V b'd'.
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For (4),

(aib) V (cld)= a V c + c'Rb' + a'Rd' + Rb'd',

t. using (4) of the previous theorem. We need the ideal

Rb'c' + Ra'd' + Rb'd'

to be the principal ideal R(ab V cd V bd)', and it is the ideal R(b'c' V a'd' V b'd').

fi Again, it is routine to check that

Ii (abVcdVbd)'= b'c'Va'd'Vb'd'. a

I Note that (011) is the zero of RIR, that is, is the additive identity, and that (11) is

the multiplicative identity. That is, (0 1) is the only element such that

[ . (01) + (alb) = (alb)

for all (a j b), and (1 j1) is the only element such that for all (a I b),

(ll)(aIb) = (aIb).
I. Indeed,

(o11) + (alb) = (0 + a)ll.b = alb,

1; and
(I11)(alb) = al(I'l V a'b V b) =alb.

I If (xly) were another zero, then

U (ol) + (xly) = (011) = (xjy).

Similarly, (111) is the only multiplicative identity for R IR.
Elements in R IR do not have negatives, in general. If

(alb) + (cld) = (a + c)lbd = (011),

then bd = 1, so b = d = 1. So the (alb) with negatives are exactly the (all), whose
negative is itself. Further, multiplication of sets does not distribute over addition of sets,

even for cosets of principal ideals. For example,

9 (I Ib)((lI d) + (1)) (lb)(lld) + (llb)(lf),

the first being (Old ), and the second being (0 1bdD). Just pick b, d, and f so that



64 Logical operations on conditional events

df bdf. However, multiplication does distribute over V, and V over multiplication, as

we have observed above for any cosets.

In any case, the "algebra" R IR is far from being a ring under the operations of

multiplication and addition. It does, however contain isomorphic copies of all the RIRb',

since

h (alb) + (clb) = (a + c)b,
and

(alb)(clb) = (acib).

The operations in R JR have many interesting properties and interrelations. WeIi record some of the more fundamental ones here. Their proofs are straightforward. In the

following, we will use just x for the element (xl) in RIR.

Theorem 3. (Bayes) Let a, + a2 + • •• an = I be a partition of 1. In particular, the ai

r[ are mutually disjoint. Then for b in R,

(1) b = (bIal)al + (bIa2)a2 +... + (b Iaqnan,

(i (2) (aj b) = (((b aj)aj) b),

S(3) (aj b)b = (b aj)a, = ajb,

(4) (ajb) = ((b ai)aj)((bI l~al + (b Ia2)a2 +...- + (b an)an). t

In particular, from (4) we get

b = (bla)a + (bla')a'

and

I! (alb) = ((bla)a)I((bla)la + (bla')a').

Recall that logical (material) implication b -4 a in R is defined to be b'Va. We

denote (b -4 a)(a -4 b) by a f- b. These operations extend to R IR in the same manner as

the others. We define

(cld) -4 (alb) = (y -4 x : y e (cld),x E (alb)),

and
clId) 1-4(alIb)

in the obvious way.

In the following theorem, parts (1) through (5) give connections of V and A with

logical implication, parts (6) and (7) are absorbing properties, while part (9) is a

decomposition property. Again, the verifications are straightforward.
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Theorem 4. The following hold.

(1) b -f a = (alb) V b' = (b'Ia') V a,

(2) (alb) = ((b -4 a)lb) = (b-4a)(blb),
(3) (alb) = (b' Ia')(OO) V (b' -4 a),

(4) (cd) -*(alb) = (cjd)' V (alb)= ((cd-.ab)I(c'd V ab V bd)),11 (5) (cld) --4 (alb) = ((cId) -* (alb))((alb) -4 (cId))
= (Cab 4 cd)Iba) = ((a Ib) + (cId))',

f (6) (a b) (aIb)((aIb) V (cId)),
(7) (alb) =(alb) V (alb)(cld),
(8) (alb) =(all) + (01b). o

3.3 An order relation and related concepts

The Boolean ring R has a partial order < given by a < b if ab= a. Being a

partial order means that < is reflexive, anti-symmetric, and transitive. That is, a < a, a 5 b
and b < a imply that a = b, and finally, a:5 b and b:5 c imply that a: <c. The partial order

does respect multiplication and V, in the sense that if a < b, then ac < bc and aVc

b V c. Further, a < b implies that b' - a'. These properties are trivial to check.

We now define a partial order on R IR in the analogous way, and note some of its

properties. In particular, it will extend the partial order on R, identifying R with the

elements of the form (r 1 1). Note that, in his discussion on qualitative probability, Savage

h (1972, p. 44) mentioned the lack of qualitative counterpart of P(a I b) P(c Id). It is
necessary, even from a qualitative viewpoint, to compare "interconditionals," that is,

conditionals with different antecedents. See also Koopman (1940), and our Chapter 5.

Definition. For (alb), (cld) e RIR,
.z (alb) 5 (cid)

(alb) = (alb)(cld).

The relation is indeed a partial order on R IR. Since

(alb)(alb) = (a2 la'b V a'b V b2) = (ajb),

* • we have (aIb) < (alb), so <_ is reflexive. If (alb) = (alb)(cld) and

* (cld) = (cld)(alb), then certainly (alb) = (cld), so that < is symmetric. Finally, to get
transitivity for _<, if (aIb) = (alb)(cld) and (cld) = (cld)(el0, then
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(alb)(e V) = ((alb)(cld))(e t) =

(alb)((cld)(et))= (alb)(cla) = (alb).

K: Th partial order above depends only on the multiplicaiton in R jR being idempotent,

commutative, and associative. Finally, it should be noted that if

(aIb) < (cld),
then

(alb) V (elV) (cla V (et)

(alb)(e j) (clId(e[,

while it is not true that (a ib) :5 (cld) implies that

U (alb) + (eif) (cld) + (e).

We now give some useful alternate conditions equivalent to being <.

Theorem 1. The following are equivalent, and hence are all equivalent to (a I b) < (c Id).

(1) (ajb) = (alb)(c d),
(2) (alb)' > (cld),

t (3) ab: <cd and c'd <a'b,
(4) (cld) =(cld) V (alb).

Proof. First we prove that (1) implies (3). If (aIb) = (alb)(cld), then

(alb) = (acIa'b v c'd v bd),
1. and we have

ab = ac(a'b V c'd V bd) = abcd,

so that ab cd. Also b = a'b V c'd V bd, whence c'd < b, and so ac'd <_ ac'b. But

• ab !_ cd gets ac' = 0, so ac'd = 0. Thus c'd5 a', and already we have c'dg b. Thus
c'd _ a'b, and so (1) implies (3). Assume (3). Then ab S cd and c'd 5 a'b. To ge.t

1. (alb) = (alb)(cld) = (acl(a'b V c'd V ba),

we need first that ab = ac(a'b V c'd V bd). The last is acbd, which is indeed ab since

ab _ cd. Finally, we need b = (a'b V c'd V bd). Now

(a'b V c d V bd)= (a' V d)b V c'd.
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But c' V d5 <b, and abd' < cdd' = 0, so b.<5a' V d. It follows that (3) implies (1).

Part (2) is equivalent to (1), using (3), and (4) is equivalent to (1) using DeMorgan's

laws and (2). a

Note that (3) implies that < is monotone in the first argument, that is, (a I b) 5 (c i b)

f if a!c. More generally, if (aIb) (cId) then (aIb) < ((c Vx)Id), as follows readily

from (3). This is not true for the second argument. For example, (a j b) and (a I bc) are

not comparable, in general. It is not true that ab < abc , so (aib) is not < (aibc), and it

is not true that a'b < a'bc, so that (aibc) is not (alb).

[I Theorem 2. The following hold.

(1) o0ab <(ajb)(b -.a) :1.

I'(2) ab: (alb)(bla) 5(a +- b).
(3) If a, < a2 5 -... a a, then

(aIa2)(a21a3) ... (an--21al1)(anl-Ian) = (aIa ).

(4) (aIbc)(bIc) = (abIc). n

Items (1) and (2) above give some connections between material implication and <,

with (2) being an immediate consequence of (1). Items (3) and (4) are called "chaining"

conditions, and (4) is a consequence of (3).

It is possible to give a formal characterization for our operations - and V on R IR.

A systematic investigation of the rational of our operations will be given in Sections 3.4

and 3.5.

Theorem 3. The mapping p : RIR -+ R defined by q(aIb) = b -4 a = V a is a

,V,)-homomorphism from R IR onto R. That is,
ii

ipf(aIb) V (cId)] = p(alb) V q(c!d)

and
[(alb)(cld)] = q)ab)rp(cjd).

Proof. First, p is well defined, and clearly qp maps R IR onto R. Now

9[ (alb) V (cad)] = (p(a V cia V c V bd) = (a V c v bd)' V a V c,

taking a _ b and c:5 d without loss of generality.

q(a I b) V q)(cId) = (b' V a) V (d' V c).
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I-. Thus we need

(a Vc Vbd)' Va V c= (a'c'(b' v d')) Va Vc b'c' V a'd' V a Vc

I;' to be bV V a V d' V c, which it clearly is. Similarly,

9q[(a Ib) A (clId)] = 9)(a ib) A q(c a). o

Theoremn 4. Let o and v be any operations on R IR extending -and V on R.
FijiSuppose that the mapping given by (a I b) -, b'a is a (o, u)-homomorphi sm. Suppose

(*1te ta (at b)o(c Id) = (abcdl cab,c4))

and
(a Ib) v (c Id) = (ab V cd IPAabcd)),

B ~where abcd5 c(a,b,c4) and (ab V cJ)5 1(a,b,cd). Then o and U=V.

Proof.

L [(a Ib)o(c Id)] = qXabcd Ic~a,b,c,d)) =

(b' V a)(d' V c)= a(a,b,cAd' V abcd =

a(a,b,cda)'+ abcd.

Let r a'b Vc'd Vbd. Then

I(b.' V a)(d' V c) = r' + rac = r' + bd

whence a(a,b,c,d)' = r. Thus o = -. Similarly,

q)[(a Ib) v (c Id)] = j3(a,b,c4)' + oh V cd

bV V a V d' Vc= bY V ab Vd' V cd =bVV d' Vohb V cd

I. (b' V d')(ohY'(cd)' + oh V cd,

the last two summands being disjoint. It follows that

j3(a,b,c,d) = [(b' V d')(ab)'(cd)']' = bd V abcd,

and that v = v. 0
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Other operations for combining evidence

For inference purposes, it is sometimes appropriate to c'ombine several pieces of

conditional information, that is, conditional events, using appropriate operations. If two

conditional events (a I b) and (c Id) arise from the same Boolean ring, then we have

various ways to do that now: multiply them, or use V, or use + in R JR, or use other

operations in R IR. Then, for example, given a probability measure P on R, one could

calculate the probability of the resulting conditional event. But what if the events a and b

F came from the Booleanring R, and c and d came from the Boolean ring S? How do
we get a single conditional event capturing the essence of the two conditional events (a I b)

and (cId)? One way is to do it is as for ordinary events. If R and S are Boolean rings,

then the Cartesian product R x S = {(rs) : r E R, s - S) is a Boolean ring under the

componentwise operations. That is, just operate componentwise. Now if r is an event in

* -"R and s is an event in S, then (rs) is an event in, that is, is an element of, the Boolean

ring R x S. Since R x S is a Boolean ring, we can form (R x S)I(R x S). The objects of

interest are the two conditional events (a I b) and (c I d), or the pair [(a b), (c Id)], with
a and b in R, and c and d in S, say. This pair is an element of the set

(RIR) x(SIS) = ((x,y) :xERR,yE SIS)

of all pairs of R I R and S IS. But this set is in natural one-to-one correspondence with

(R x S)I (R x S) via the mapping

[(aIb), (cjId)] -i ((a,c)I(b,d)).

The upshot is that the pair (a I b) and (c Id) of conditional events is associated with a

conditional event, namely one in the space (R x S) (R x S). For any probability measure

P on R x S, one may assign the probability of [(a lb), (cl d)] to be P[(a,c) I (bd)], which
makes sense.

Another way to combine evidence of the form above is this. Regard the Boolean

rings R and S as rings of subsets of Ell and Q2, respectively. Let

C = [a x b : a e R, b E S},

that is, the set of all Cartesian products of elements of R by elements of S. Thus each

element of C is a subset of f2l x 0-2, or C c Y (Ql x f12), the Boolean ring of all

subsets of 2, x n2.Now C is not a subring of the ring 9(fl x f22), as can be seen by
observing the the basic relations between union, intersection, and complement are given

by the formulas
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(ax b)' = (a x 02) u (0 x b'),

(a x b) n (c x d) = (ac x bd),

(" and
(ax b) u (cx d) = (ax b)' n (c x d)'.

However, there is a unique smallest subring R * S of o0(911 x D) containing C, namely
the intersection of all those subrings containing C. The operations of the ring are then

( just just the usual set theoretic operation of 9(f 1 x 2). For a, b e R and c, d E S, we

define

(alb) x (cjd) = (e xf: e e (alb),fje (cld)).

" *But observe that

7-. (e x.) n (b xd) =ebxfd=abxcd.
Hence

I;

e xf E (ab x cdb x a) e (R •S)I(R .S).
That is,

(alb) x (cl) = (ab x cdl b x ).

Note that if P is a probability measure on R * S then
4 .

P[(aib) x (cIa)] =P[(ab x ca)I(b x d)].

As an illustration of the possibility to use this type of operation x among

conditionals in the problem of combining evidence, consider the well-known "penguin

triangle" problem in AL, as discussed for example in (Pearl, 1988).

Let

f = flying animals

b = birds

p = penguins,

" - so that (fib) = "birds fly", (f' jp) = "penguins do not fly". For an analysis of this type of

information, see (Zadeh, 1985). It is appropriate here to combine the peices of evidence

(fib) and f' lp) via the operation x among conditionals. This is in line with familiar

situations in statistics. Now

(fjb) x (f"jp) = ( x f'p) Ib xp).
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Thus P(fb x f'p lb x p) should be close to 1 for any reasonable probability P on
ReS.

1'i 3.4 Connections with three-valued logic

So far we have studied the logical operations on the space R JR from a syntax

, viewpoint. In this section, we will investigate the semantic relation with three-valued

logics. To that end, we first discuss that relationship between Boolean algebras and

classical two valued logic. We then show that an analogous relationship exists between

RJR and three-valued logic. Since Boolean polynomials play a fundamental role, we

[1) begin with a discussion of them and their properties that are pertinent to our situation.

J ~This discussion is informal, but should be sufficient for our purposes.

uAn elementry Boolean polynomial in the n variables XI, X2, ..., X. is Y1Y2...Y ,
. where Yi = Xi or Xi'. The symbol Xi' should be thought of as the complement of Xi,

and the elementary polynomial Y1Y2...Yn should be thought of as the product, or

conjunction of the Yi. We are using juxtaposition to indicate this conjunction, rather than

inserting the conjunction symbol A. There are 2n of these elementary Boolean
polynomials. A Boolean polynomial in the n variables X1, X2, ... , Xn is a expression of

the form E1 V E2 ... V E.m, where the Ei are distinct elementary Boolean polynomials.

J "Thus a Boolean polynomial is the (formal) disjunction of elementary ones. The empty

disjunction is allowed and is denoted 0. The order of the Ei in the disjunction is

immaterial. (As an aside, the set of Boolean polynomials in the n variables

X1, X2, ..., Xn may be thought of as the Boolean algebra of all subsets of the set of

I: elementary Boolean polynomials in those variables.)

Here are some examples for the case n = 3. There are 23 elementary Boolean

polynomials, namely

XIX2X3, X'X 2X3, XIX 2'X3, X1X2X3", X,'X2"X3, X,'X 2X3 ", X lX2"X3", Xl 'X2'X3'.

The expression

f = XX 2X3 v XX 2'X3 v X1X2X3' v X 'X2X3'

!is a Boolean polynomial in three variables having four elementary terms.

Generally, a Boolean polynomial in the variables X1, X2, ..., Xn is any expression
formed from the Xi using A, V and '. For example, in the case n = 3,

f = XX 2 V Xl)(X2 'X3 V XX2) V (X3' V X")'X 2X3'

is such an expression. However, manipulating this expression as if the X, were elements
of a Boolean algebra, and A, V, and ' were the usual operations on it, one may bring f
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[" into the form of a disjunction, or union, of elementary Boolean polynomials, and this form

is unique. This is the well known fact that every Boolean polynomial can be written in its

disjunctive normal form. We regard any two Boolean polynomials the same is they have

the same disjunctive normal form. This is the same thing as requiring that two are the

same if they induce the same Boolean function Rn -4 R. The disjunctive normal form of a

Boolean polynomial is not usually the simplest form of that polynomial. For example, if

n = 3, the Boolean polynomial

1i X1X2X3 V X1X2'X3 V XX 2'X3 V XlX 3',

which is in disjunctive normal form, may be more simply represented as X1. Our unions

of elementary Boolean polynomials are of course in disjunctive normal form.

The following proposition is clear.Ii
Lemma 1. There are 2P Boolean polynomials in n variables.

The connection between Boolean polynomials and mappings is this. If f is a

Boolean polynomial in n variables and R is a Boolean ring, then f induces a map

Sf: Rn -4 R by evaluation. Note that we use the same symbol f to denote a Boolean

polynomial as well as the function it induces on any Boolean algebra Rn. This is

Sconvenient, and should cause no confusion. For example, if n = 3 and

f = X1X2X3 V X1X2 'X3 V XIX2X3' V X1 "X2X3 ,

then the mapping f. R3 -4R is given by the formula

flal, a2, a3) = a1a2a3 V ala2'a3 V ala2a3 ' V al1a2a3 ".

I .Definition 1. A function Rn -4 R is called Boolean if it is induced by a Boolean polynomial

in n variables.

There are a couple of pertinent elementary facts about about these evaluation maps

and elementary polynomials. First notice that there is a natural one-to-one correspondence

between elementary polynomials in n variables and n-tuples of 0's and I's. For n = 3,

XlX 2 "X3 corresponds to (1, 0, 1), for example. An elementary polynomial takes the

value I on that n-tuple of 0's and I's to which it corresponds, and takes the value 0

on all other n-tuples of 0's and I's. Thus, given an n-tuple a of O's and l's from a

Boolean algebra R, there is exactly one elementary Boolean polynomial e in n

variables for which e(a) = 1, and that e has value 0 on all other such n-iuples. This
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fact is the basis of the following lemma

Lemma 2. For any Boolean algebra R and any n, distinct Boolean polynomial in n

variables induces distinct maps Ra -4 R.

Proof. Suppose f and g are Boolean polynomials in n variables and f; g. Then
there exists an elementary polynomial e in n variables such that e is a term of f and

not a term of g (say). Now e(a) = 1 for exactly one n-tuple a of 0's and I's, and

f(a) = 1 while g(a) = 0. Thus the polynomials f and g induce distinct mappings from

Rn to R. o

Lemma 3. Let (0, 1) be the two-element Boolean algebra. Then every map

f: (0, 1)n - { 0, 1) is induced by a Boolean polynomial in n variables.

Proof. There are 2P Boolean polynomials in n variables and 22a maps. Use
[1 Lemmas 1 and 2. 0

The previous lemma says that given any map
~g : (o, Iz}--4 [o, 1},

there is a Boolean polynomial f in n variables inducing that map g. That Boolean

polynomial is easy to construct, given g. For each n-tuple a from (0, 1) for which

g(a) = 1, there is exactly one elementary Boolean polynomial e for which e(a) = 1. The

Boolean polynomial inducing g is the union of those e. Thus, if

_ g -: o, 11 -4 [{o, 1)

is presented by a table

! (a,, a2, ... ar) g(al, a2, ....,an)

then the Boolean polynomial inducing it is the union of the elementary Boolean

polynomials YIY 2...Yr, where Y=Xi if ai=I and Y.=Xi if aj-O and

g(al, a2, ... , a,) = 1. For example, for n = 3, if the table is
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a, a2 a3  g(al, a2, a3)

0 000 0
001 1

010 0

100 1

ii0 011 0
101 0

110 1

11 1 0

Uthen the Boolean polynomial is XI'X 2 'X 3 V X1X 2 "X3 ' V X1X 2X3 ".

( |Corollary. If R is any Boolean algebra and if f. R-n- R is a Boolean function, then f is

completely determined by its action on (0, 11n.

1Let R and S be sets, and let r : R -i S be any function. Then t induces a function
in: R" -4S by the formula

in (rl, r2, -.-- , r.) = (I(TI), KrO,, - t (rn)).

Now suppose that R and S are Boolean algebras and t is a homomorphism. That is, r is
-a function such that

(r V s) =1(r) V t(s),

r(r A s) = I(r) A I(s),

and t(r') = 1(r)"

for r, s in R. In particular, t(0) = 0 and t(1) = 1, as may be checked. If f is any
Boolean polynomial in n variables, then since t is a homomorphism, we havef immediately that for (rl, r2, ... , r) e R-,

ff(ri, r2,..., r) =f((rl), (r,..., )).

This may be rephrased as follows.

. Proposition 1. Let R and S be Boolean rings and r R -4 S a homomorphism. Let f
and g be a Boolean polynomials in n variables. Then the diagram
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ARn - f R

in

commutes if and only if f =g.

Proof. Suppose that f = g. Since t is a homomorphism, we have

t(f(ai, ..., an)) = ftt(al), ... , t(an)) = flti(a 1 , ..., an)),

whence the diagram commutes. Now suppose thatf and g are Boolean polynomials such

(1 that the diagram commutes. Since t(O) = 0 and .1) = 1,I and g must induce the same
map on [0,.1)n , which is contained in both Rn and Sn.ThusbyLemma2,f= g. o

Now we specialize the results above to the case where S is the two element Booleanr 1 algebra (0, 1). In that case, the homomorphism t is called a truth evaluation on R. In the

diagram

~~I~i g0I'o)n -~(0,1)

f

if f is any Boolean polynomial, then the map TPf induced by the Boolean polynomial f,
is called the truth function, or truth table of the Boolean function f. It of course depends

I ~ also on the homomorphism t, that is on a truth evaluation on R. More generally, any

function T : (0, 1)n -4 (0, 1) s called a truth function, or truth table. So for the case

S = (0,1), the result may be stated as follows:

Theo nm 1. Let R be a Boolean algebra, let t be a truth evaluation on R, and let

f.: R" -4 R, be a Boolean function. Then there is exactly one truth funtion

such that = tof,

namely T' = f. Conversely, given a truth function T, that is any mapping
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T ': (O,1)n- _{O(,1 40
there is exactly one Boolean function f: Rn -4 R such thatV

Toln = 1of,

" namely that given by the Boolean polynomial f inducing T. In particular, there is a

one-to-one correspondence bwtween truth functions (0,1} n 
-4 (0,11 and Boolean

functions Rn -4 R. a

Finally, it should be noted that above, given f, the construction of 'f is

Iimmediate. If f is given as a Boolean polynomial, then there is no computation to be

made for the construction: 'f is that same Boolean polynomial. In any case, f is

determined by its action on (0, 1}n inside Rn, and given any function from (0, i)n to
(0, 1), we have specified earlier how to write down the Boolean polynomial inducing that

[1 function. So the construction of 'f from f is routine. Now given T : (0, 1)n -4 (0, 1),

write down the Boolean polynomial inducing T, and that gives the unique f such that

'T otn = fot. So not only do the requisite f 's and Tf 's exist, we have an explicit

U- procedure for constructing them.

We are now going to generalize the results above to the conditional case. In

particular, R IR will play the role of R. First, we must decide on, and develop the relevant

properties of, the analogs of Boolean polynomials for the conditional case. That is, which

maps (RI R)n -i RI R should play the role that Boolean maps Rn -4 R play? Elements of
R I R are of the form (a I b), with a, b E R. This representation is unique if a is taken to

I be contained in b, that is if ab = a. Any mapping (RIR)n-4RIR takes an element of
the form (al I bl, a2 I b2, . .. , an I bn) to one of the form (alb). Again, a is not unique,

but ab is, and thus ab should be a function of the 2n variables

(albl, a22, . anbn, bl, b2, . bn).

pJ We require that this function be induced by a Boolean polynomial f of 2n variables.

Similar requirements are mandated for the existence of a Boolean polynomial g of 2n

U! variables yielding b. But the situation is not as simple as in the classical case. Different
Boolean polynomials can induce the same mappings on 2n-tuples of the form
(r1, r2, ... , rn, rn+, • , r2n), where r i < r n. A moment's reflection shows that two such

polynomials induce the same mapping on such 2n-tuples if and only if their elementary

terms are the same except for those of the form

YIY2 . .xi ...y n Yn+ I ... Xi+n,... Y2n.

These are precisely those elementary terms that are 0 on 2n-tuples of the form
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(rl, r2,..., r., rn1, •, rzn) where ri rjn. We call a Boolean polynomial in 2n

variables reduced if it contains no elementary terms of the form displayed above. It

should be clear that in our considerations here, only reduced Boolean polynomials need be

considered. Thus we are requiring that a function (R J R)n -4 R IR be given by two

reduced Boolean polynomials f and g of 2n variables. The polynomial f will consist

of some cf the elementary terms of g, so that f g in that sense. Such a pair of Boolean

polynomials will be denoted fig, and is called a conditional Boolean polynomial of 2n

variables. For any Boolean algebra R, a conditional Boolean polynomial of 2n variables

induces a function (R I - R I R by the formula

L (fIg)(alIbl, a2 Ib2 ,. .. , a.Ib.) =

]falbl, a2b2, ... , anbn, bl, b2,. .., bn) Ig(albl, a262,... abn, bl, b2,. .., bn).

Lemma 4. There are 33 n conditional Boolean polynomials of 2n variables.

HProof. A conditional Boolean polynomial is of the form fjg, with f and g

reduced and the elementary terms of f among those of g. The number of reduced

elementary Boolean polynomials of 2n variables is 3n. To see this, note that for such a

polynomial, there are 2n choices for its first n entries. For those entries that are Xi,

f there is only one choice for the (i + n)-th entry, namely Xi. For those entries that are

Xi', there are two choices for the (i + n)-th entry, namely Xi or Xi'. So there are 21

(1 elementary terms in which i of the first n entries are Xi's. It follows that there are

indeed

I 2i(Q) = 3nl
i=O

elementary reduced Boolean polynomial 2n variables. For each such g with i

S"elementary terms, one has the choice of 2i fs. Thus there are

13n 2i n

' l)ssible fi g's, and the proof is complete.

Any Boolean algebra R contains the two element Boolean algebra [0, 1). We

denote this two element Boolean algebra by V. Thus inside R I R is

~~vlv = ((011), (1 I1 ,(010)),
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[ and so inside (RIR)n is (VIV)n. Now VIV will play the role here that V did in the

classical two valued case. The elements (0 11), (11), (010) will be identified with the

truth values 0 (false), t (true), and u (undecided), respectively.

" = ma 5. Let R be any Boolean algebra. Distinct conditional Boolean polynomials

induce distinctfunctions (R IR)n -4R IR.

Proof. This follows from the observation that distinct reduced Boolean polynomials

induce distinct mappings on the set of sequences (r1 , r2, .. , r, r , ... , r2n) of O's and

l1's with ri ! rin.

p Lemma 6. Every function (VI V n -4 VI V is induced by exactly one conditional Boolean

polynomial in 2n variables.

fl Proof. There are 33n such functions. Use Lcmmas 4 and 5.

Definition 2. A function (R I R)n -4 R I R is a conditional Boolean function if it is induced

by a conditional Boolean polynomial. )

For a conditional Boolean polynomial fig of 2n variables, the function

(RIR)Y-+RjR it induces will also be denoted fig. Such a Boolean function

a.. fig: (RIR)1-4RIR is determined by its action on (VIVY1. This follows from Lemma 6.

Let R and S be Boolean algebras, and let t: R -4 S be a homomorphism. Then t

induces a function RIR -4 SIS, which we also denote by t, by the formula

t(a I b) = (t(ab) I t(b)).

Now t is well defined since t: R -4 S is a homomorphism so that t(ab) t(b). The

function t :RIR -4 SIS induces in the usual way the function tn : (RIR) -4 (SIS). The

following proposition generalizes Proposition 1 to the conditional case.

Proposition 2. Let R and S be Boolean algebras, let t : RIR -4 SIS be induced by a

homomorphism from t R -4 S, and let fi g and h Ik be conditional Boolean polynomials

in 2n variables. Then the diagram
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in" t

1.

1 (SjS) hik ,sjs -

commutes ifand only if f Ig h Ik.

Proof. Suppose that fg= h Ik. Then

[.4( I t[g)((al l), ..., (an I b))]

" = tff(albl, ..., anbn, bl, ..., br) Ig(albl, ..., anbn, b, b)]

= (t(f(alb, ..., anbn, bi, ..., bn))It(g(albi, ..., aabn, bi, ..., bn)))

f = (Jjt(albl), ..., t(anbn), t(bi), ..., t(bn)) Ilg(t(albl), ..,ta ba, t(bl,., t(br))

T'T = (f I g)[("(albl) I t(bl)), ..., (t(a.an) I t(bn))]

(f I g)[t(alb I b)..., t(anbn I b,)]

= CFig)[z'((albi Ib1 ), ..., (anbnIbn))],

and the diagram commutes. Conversely, if the diagram commutes, then since t is the

identity on VIV, viewed as contained in both RJR and SIS, the conditional Boolean
[ polynomials must agree on Vj V, whence they are equal by Lemma 6. a

For the case n = 2, a conditional Boolean polynomial fig gives a binary operation
on RJR and one on SIS, and the commutativity of the diagram just says thatI) t:RIR-4SIS is a homomorphism with respect to those operations. Thus t is a

homomorhism for any binary operation induced on R IR and S IS by any conditional

Boolean polynomial fig.
LJ Let t be a truth evaluation on the Boolean algebra R. That is, t is a

homomorphism from R to the two element Boolean algebra (0, 1) = V.

Definition 3. A truth evaluation on RIR is a function t: RIR -4 VIV induced by a truth

evaluation t on R by theformula

t(aIb) = (t(ab) It(b)).
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- Note that we are using t both for the truth evaluation on R and the truth evaluation it

induces on R IR. Viewing R IR as containing R, the truth evaluation on R IR induced by a

truth evaluation t on R is an extension of t to all of R IR. Viewing VI V as a subset of

R IR, a truth evaluation t on R IR is the identity function on VI V.

Since VIV = (11), (ll), (010)) has three elements, each conditional event

(aIb) has one of t&-ee possible truth values, (011) (false, or 0), (ill) (true, or 1), and

fl (010) (undecided, or u). The truth value t(a I b) of (a b) is thus called true if
[It(ab) = 1, false if t(a'b) = 1, and undecided if t(b') = 1.

We pause here to discuss these three possible truth values, their justification,

motivation, and history. The connection of conditional events and three-valued logic, at
(an informal level, appeared in r.Finetti (1964). Following his discussion on conditional

prevision and probability, in which the concept of conditional events was mentioned

(DeFinetti, 1974, vol I, p.134), he brought out the connection as follows. In the

conditional event (a b), there are three cases to consider, ab, ab', and b', corresponding

to "thesis", "anti-thesis", and "anti-hypothesis", respectively. The event a enters the

picture only throough its intersection with b. Thus (a I b) can be written in its "reduced"

form (ab1b). For DeFinetti, (alb) is a formal object with no strict mathematical

" meaning. He stated that "one might consider (a I b) as a tri-event with values (111) = 1,

(0 11) = 0, and (010) = 4), where I = true, 0 = false, and 4) = void, according as it leads to

a "win", or a "loss", or a "calling off" of a possible conditional bet."

A similar idea appeared in Schay (1968). Generalizing indicator functions of

ordinary events, Schay defined conditional events (a b) as functions, defined on a

sample space f, and taking three possible values (0, 1, u}, with u denotingI "undefined". This approach is similar to the one taken in fuzzy set theory (Zadeh, 1965).

The truth space (0, 1, u) is standard in three-valued logic. (See Rescher, 1969.)

However, in the calculations to be presented in this chapter, DeFinetti's notation will be

I[ used, and we will justify the meaning give,, to the symbols ( 011), (0 1), and (010). (See
also, Boole, 1854, pp. 89-97, and Hailperin, 1876, pp. 123-137.)

LIn classical two-valued logic, the truth values of a Boolean expression such as

b -4 a, or equivalently b' V a, are determined from those of the variables a and b. The

truth space (0, 1) is a Boolean ring which can be viewed as being contained in every

Boolean ring R, so that the determination of the possible truth values of a Boolean

expression is equivalent to that determination for the case R = (0, 1). That is, the

,- determination of the possible truth values can be made by substituting only the values 0

and 's into the expression. Consider now a conditional event (a I b). It is not a Boolean
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expression, but one can formally apply this evaluation process to get the possible "truth
values" of (a I b). This is what DeFinetti did. Doing this for (a I b) yields the three

- possiblilities (I 11), (011), and (0,0) = (110). Using our modeling of conditional events

as cosets of principal ideals,

F, (111)=1 + (0,1)0=1 + {0) = (1),

(011) = 0 + (0, 1)0 = 0 + (0) = (0), and

( ) =0 + 0o, 11 =0 + (0, 1)=0,1).

The first two we identify with "true" and "false", respectively, but there is a third possible
["truth value" (010) = (0,1), which can be interpreted as "undecided" since we cannot

reasonably choose one of the values "true" or "false" for (at b) when both a and b areI] 0.
Now back to our more mathematical truth evaluations t:RIR -4 VIV. In the

pdiagram
(RIR)n fig , RIR

(VI[VY VIV,

ftg

i if fig is a conditional Boolean polynomial and t is a truth evaluation on R iR, the map
j.t fg induced by that polynomial on (VI n is called the truth function or truth table of

figj fig. It of course depends on the truth evaluation t. More generally, any function
T : (VtV)n-. V V is called a truth function or truth table. Here is our main theorem for
the conditional case. It follows immediately from the previous Proposition 2 and

I' - Lemma 6.

Theorem 2. Let R be a Boolean algebra, let t be a truth evaluation on R tR, and let

Sfig : (R IRY" - R IR, be a conditional Boolean function. Then there is exactly one truth
function

fig* V ~- ~

such that

'Pj.gOln = to(fIg),
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namely 'Pfig = fig. Conversely, given a truth function TI, that is, any mapping

there is exactly one conditional Boolean function fi g (R IR)n -, R IR such that

S'T oti = to(fIg),

namely that given by the conditional Boolean polynomial fi g inducing P. In particular,

there is a one-to-one correspondence between truth functions (VI V)" -4 VIV and

conditional Boolean functions (R IR)1 - R JR. n

In the theorem, given fig, how can one actually construct TP 9 Given TP how
fig*

can one actually construct fig? If fI g. is given, it is almost always given in the form of

a conditional Boolean polynomial, in which case simply take Tfjg = fig. In any case,

the action of the function fig on VIV is given, and that action determines fig. So

from a function (VI V)n -4 V IV, we need to construct the conditional Boolean polynomial

inducing iL Thus we need to construct two Boolean polynomials inducing two given

1Boolean functions Vzn - V. We have seen earlier how to do this explicitly. Now,

conversely, this is the same problem as constructing from Tp : (V I V)n V IV the requisite

fig. So carrying out these constructions is just a problem in constructing Boolean

polynomials inducing given functions V"W - V. We will have occasion to carry out some

of these constructions in Section 3.5 for the cases n = I and n = 2.

In case n = 2, each conditional Boolean polynomial gives a binary operation on

R IR, and in particular on VI V, and we have a one-to-one correspondence between binary

L: operations (given by conditional Boolean polynomials) on R IR and (binary) truth

functions on Vi V. The case n = 1, of course, gives a unary operation on R IR, or just a

t mapping from R IR into itself, and there is a one-to-one correspondence between unary

operations on R iR (given by conditional Boolean polynomials) and unary truth functions

on VIV. The space VIV= (01I), (111), (0 10)) is called the truth ,,pace. We sometimes

label its elements 0, 1, and u for (0 11), (i1), and (010), respectively, thinking of 0 as

false, 1 as true, and u as undecided. Various authors have defined logical cc.nnectives, or

operators V, A, and ' on R IR, and there are several well known sets of truth tables for the

truth space VI V. Given logical operators V, A, and ' on R IR, there are corresponding truth

tables for them. These truth tables may or may not be reasonable ones from a logical

point of view. It is typical that a three-valued logic is specified by giving five truth tables,

one for each of the connectives V, A, ', -4, and t-. In any case, truth tables for them give

rise to algebraic operations on RI R, and with these operations, R IR may or not be an
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interestL r or tractable algebraic system. This one-to-one correspondence between truth
lip tables (for V IV) and operations on R IR is of interest, with this latter structure providing a

syntactic home for a given three-valued logic. We will look at several such
correspondences in Section 3.5.

In discussing conditional Boolean polynomials, we have stuck to those fIg in

reduced form. That is, f and g are Boolean polynomials in normal disjunctive form
with no terms of the form

YD i2,, ,vXi...,t ln, l+l,... ,xn', y ,

]and every elementary term of f is one of g. Usually, a Boolean polynomial can be

written in much more compact form than its normal disjunctive form. For this reason, and

I for computational purposes, we indicate how to associate a conditional Boolean

polynomial with fig for any Boolean polynomials f and g. To do this, just put f and

g in their disjunctive normal forms, discard from each their elementary terms of the form

displayed above, and from f those elementary terms not in g. This last step is the same

as "intersecting" f with g. In fact, one could intersect f and g first, and then putfg

and g in their normal disjunctive forms, discarding those terms of the form displayed

above. This gives a pair fig in reduced form, and starting from any pair, it should be

I clear that it is associated with exactly one fig in reduced form. Further, any pair fig

induces a function

fig : (RIR) -4 RIR

just as in the case of reduced forms, and two fig's induce the same function if and only if

they have the same reduced form. We will call two fig's equivalent if they have the

same reduced form, or what is the same thing, if they induce the same mapping just

indicated.

The procedure outlined above is useful in verifying that two pairs fig are
equivalent. We illustrate with an example. Let n = 2, and consider the two conditional

polynomials

fAg = (XI' v X2 V Xs'X4 ")I(XI'X3 V X2X4 V X3X4 V X3 X4")

t: and
hlk = (XX2 v X'X3 v X2Xs' v X3 'x4 )(X 17X3 v XX4 V X2Xs' v X3"X4").

Now it is an easy calculation to get
-1
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fg = X1 'X3 V X2XY4 V X3
1X4' @

hk=XX 2X4 V X11X3 V X2X3' V X3'X4,.

Still, it is not clear at all that

I.fg 1g=(XI'X3 V X2 4 V X3'X4')I X' 3 V X2X4 V X 4 V X37X4 ')

F! and
hklIk = (X1X2X4 V X1'X3 V X2X3' V X37X4') I (K1 X3 V X1X4 V X2K3' V X3'X4')

[I are equivalent. The disjunctive normal form of fg = X1 'X3 V X2X4 V X3 7' 4' is

B x1I'x2X3x4 V X 'x2'X3X4 V X1 'X2-x3X4' V x1 'x21X3x4'

V XjX 2X3X4 V X1 'X2Xy3X4 V X1X2X3'X4 V X1 'X2X3'X4

V XiX 2X3'X4' V Xl'X 2X3'X4' V XIX 2 ,X3'X4' V X1'X2'X3,X4
t ,

which, after discarding duplicate terms and those of the forms X1WX3'Y and WX2YX4",

I! ~X1 'X2X3X4 V X1 'X2'X3X-4 V X1 'X2'X3Y4'

V X12XX V 1 X'XX3 X4 VX'X 2)'X '
Similarly, the normal disjunctive form of hk = X1X2X4 V X1,X3 V X2X3' V X3 -&4 ' is

XIx2x3X4 V XiX 2X3 'X4

V XIX2X3'X4 V X1 'X2X3'X4 V X1X2Xy3 ,X4' V X1 'X2Xy3,X4'

U ~V X1X2X3 'X4' V X1 'X2X3'X4' V X1X2,X3,X4' V X1 'X2'X3 'X4'.

Again, discarding duplicate terms and those of the forms X1'WX31Y and WX2YX4' yields

XIX2x-3x4 V X1 'X2X34 V X 'X2'x3xy4

V X1 'X2'X3xy4' V XI'X2X3'X4 V X1 'X2 fX3'X4',

which is the same form as that of fg. Similarly, g and k have the same such forms, so

that fig and h 1k are equivalent. Thbey represent the same conditional Boolean
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polynomials, andiduce the same conditional Boolean functions.

In summary, the situation is this. There is a one-to-one correspondence between

S(o (conditional) logical operations on R JR and truth functions on the truth space (0, 1, u).

Note however that, unlike the case of R, there is a variety of three-valued logics. See, for

example, Rescher (1969) for background. Also, note the difference with the Boolean case:

i. since both R and (0,1) are Boolean rings, truth evaluations are specified as
homomorphisms; the situation in three-valued logics is somewhat different. Indeed, as far

as three-valued logics are concerned, all logicians insist on the choice of some system of
"truth tables" for basic connectives between implicative propositions without syntax

considerations. This is not surprising since the concrete space RIR of implicative

propositions, as a mathematical entity, was never considered at the level of Boolean rings

. for unconditional propositions. Now, since R IR is shown to be the space of all cosets of
principal ideals of R, it is possible to investigate its algebraic structures induced by

semantic considerations.
[In the case of R IR which has no a priori algebraic structure, we have only at our

disposal truth evaluations r R IR -4 (0, 1, u) defined previously. The objective is to

establish an analogous commutative diagram for the conditional case. This type of

diagram will provide algebraic structures for R IR from given semantics and vice versa-

I If (0, 1) is the truth space in classical two-valued logic, then formally ([0, 1)1(0, 1))
is the truth space for elements of the conditional space R IR. From the above
identification, we see that three-valued logic is natural for conditional events. This is in

line with earlier considerations of DeFinetti (1964) and Schay (1968). It is interesting to
note that the symbols (0Il), (111), (010) appeared also in Boole's Laws of Thoughts

1 (Boole, 1854), apparently in his attempt to provide a disjunctive normal form for ratios of

propositions. See also Hailperin (1976).

Another constructive proof of Theorem 2 will now be given. First, in view of

" Stone's Representation Theorem, we regard the Boolean ring R as a field of subsets of

some set n2. As such, truth evaluations can be expressed in terms of indicator functions.

L Recall that the generalized indicator function of (a I b), for a, b E R, is defined as:

9(alIb) Q #(0, u, 1)

I ifoeab

9 (aIb)(0) =0 if co e a'b

u if 0 b,

-: Assuming a _5 b, (a Ib) partitions K2 as a. a'b, bV, so that if we let
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polynomials, and induce the same conditional Boolean functions.

In summary, the situation is this. There is a one-to-one correspondence between

(conditional) logical operations on R JR and truth functions on the truth space (0, 1, u).

Note however that, unlike the case of R, there is a variety of three-valued logics. See, for

example, Rescher (1969) for background. Also, note the difference with the Boolean case:

since both R and (0, 1) are Boolean rings, truth evaluations are specified as
homomorphisms; the situation in three-valued logics is somewhat different. Indeed, as far

as three-valued logics are concerned, all logicians insist on the choice of some system of
"truth tables" for basic connectives between implicative propositions without syntax
considerations. This is not surprising since the concrete space R IR of implicative

propositions, as a mathematical entity, was never considered at the level of Boolean rings
for unconditional propositions. Now, since R IR is shown to be the space of all cosets of
principal ideals of R, it is possible to investigate its algebraic structures induced by
semantic considerations.

[1In the case of R IR which has no a priori algebraic structure, we have only at our

disposal truth evaluations t : R IR -4 (0, 1, u) defined previously. The objective is to
establish an analogous commutative diagram for the conditional case. This type ofN. diagram will provide algebraic structures for R IR from given semantics and vice versa.
If (0, 1) is the truth space in classical two-valued logic, then formally ({0, 11 1(0, 1))

is the truth space for elements of the conditional space R IR. From the above

identification, we see that three-valued logic is natural for conditional events. This is in
line with earlier considerations of DeFinetti (1964) and Schay (1968). It is interesting to

note that the symbols (0 11), (111), (010) appeared also in Boole's Laws of Thoughts

(Boole, 1854), apparently in his attempt to provide a disjunctive normal form for ratios of

propositions. See also Hailperin (1976).

Another constructive proof of Theorem 2 w:l now be given. First, in view of

Stone's Representation Theorem, we regard the Boolean ring R as a field of subsets of
some set Q2. As such, truth evaluations can be expressed in terms of indicator functions.

LRecall that the generalized indicator function of (a b), for a, b E R, is defined as:

. p~alb) :Q -1O, u, 1)

I if co Eab

O (a Ib)(0) =0 if co E a'b

u if CoE b'

Assuming a 5 b, (aib) partitions K2 as a, a'b, b', so that if we let
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i = 1, 2, n, there are only three pairs (0, 1), (0, 0), (1, 1) for each (3., 'y), thus, letting

i j, -- = , o, 1)

1 ifo(3i)=(l, o)

and, for

Z = (Jl"'T -""in)'

[wjalb) = W1 (a, b)... w(anb n)"

we have

a,~ ~ ab VUI 8(1,---, ,, ',---, yd'&j ) V w(alL ' ) 
.a { O,ul}n  jEJ(ab)j

[where
y(a) S_ to, u, 1 p,

Note that . (l, j2, ... , in) with ji corresponds to (3.,). Define

[] :: to, U, -4 [0, u, 1)by

SIq ifjec- Jra)

U ifij Ef(P)

I where Jc(a) denotes the set-complement of J(a) in {O, u, 1)n and similar notation
applies to J(P).

( Note that flalb) might have another representation form, say (A(a, b) I a, b)), but

then a(a, b) n a, b) = A(a, b) n J(a, b), implying that

J(a) n J(P) = J(A) n J(P),

so that vf is well-defined.

For vf. defined above, (*) holds. Indeed, for (a IbL) E (RIR)n arbitrary but fixed,
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-V qiab))(o) = 1 if and only if q(a,(a b)I (a, b))(o)= 1 if and only if coE a(a, b)

(assuming a: if and only if

Iif and only if

[for some

E6 J(a)
if and only if

I! o)ew. (a.b),Vi=1,2..., n

1 (where= ( " n )) f and only if

4pa I bi)(0) = h' Vi = 1, 2, ...,n

if and only if

= §tO) = 1frPal1bl)(O) .... , (an b)(o()) = (Q).

The argument is similar for q kab))(6)) = 0 or u.

Conversely, if V: [0, u, 1)' - (0, u, 1) is given, then there exists a unique

[-L Boolean-like map (al) "(RIRY1 -*RIR such that (*) holds. Indeed, it suffices to take

1" =ga,b)= v w,1 a),
1 , -- ,i(] - -

[(a, b)= V _ w.(alb).

Several remarks are in order.

(i) Viewing (a I b) as a mathematical entity with the three possible values 0, u, or 1,

the function Tf uniquely associated with a map f: (RjR) -, RIR is precisely the "truth

table" of f. The function Tf is completely determined once f is specified. The

conver se is also true: a truth table T will uniquely determine a "syntactic" (mathematical)

modeling of a connective on R IR. Moreover, (*) of Theorem 2 expresses the

uth-functional property of logic, namely truth values of an n-ary connective on R I R
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fare determined from those of the components.
(ii) In the literature of three-valued logic (for example, Rescher, 1969), one usually

considers a collection of sentences S in which each sentence s can be either true, false,
or "undetermined" (Lukasiewicz, Bochvar, Kleene). The algebraic st, -ture of S is rarelyI specified. Instead, semantically, five truth tables, one each for. A, V, ',-4, and +-- are
given. Our remarks above show that, given such a system. of "truth tables", one can[explicitly write down their "syntactic" counter-parts, and conversely.

It is interesting to speculate about the algebraic analog of a Boolean ring as a basic
space for Lukasiewicz's logic. That is, can one give a mathematical representation of a

sentence s in S in such a way that as an algebraic structure, S will be equipped with the
basic connectives whose truth tables are given in advance? As we shall see in Section 3.5,

I i one such mathematical representation for S is our conditional extension R IR where our

logical operations introduced in Section 2.2 correspond precisely to Lukasiewicz's truth
B. tables.

(iii) As far as we are concerned here, the easy part of Theorem 2 will serve as a
pway to discuss the "reasonability" of our proposed system of logical operations for

conditional events. This will be carried out in two steps. First, from a given system of
[- operations on R IR, one proceeds to identify their associated truth tables using normal

disjunctive forms of Boolean functions and the explicit construction of 1f given in the
proof of Theorem 1. Next, once a system of truth tables is obtained, one looks at the

[i] names of the connectives involved (say, f = "and") and examines their truth tables. Since
a truth table of a given connective (in natural language) should reflect the common sense

[meaning of that connective, any "unreasonable" truth table found will lead to the
conclusion that its corresponding proposed operation on RJR is "unreasonable". This

program will be carried out in Section 3.5 with the systems of logical operations on R IR
proposed by Adams, Calabrese, Schay, and by us.

The other part of Theorem 2, namely that each truth table in three-valued logic,

corresponds uniquely to an operator on RJR, is useful for investigating new algebraic
1 structure of R IR.
. (iv) The above three-valued logic viewpoint can be used to formulate the concept of

realizations of conditional events. Let R be a a-field of subsets of a sample space Q2. The
generalized indicator function q) of each (alb) is defined as q(aIb)(o) = 1 on ab, u on b
and 0 on a'b. As in the case of ordinary events, where a e R is said to be "realized" if the
"outcome" o) E a, that is, if !(a I 1)(o)) = 1, conditional events can possess a similar
concept, viewed from a three-valued logic standpoint. Recall that (a b) = [ab,b" Va]. If Co
E ab, then co E x for all x E (alb), so that (c'Ib) is "fully" realized; if co E a'b, then o e x
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for any x E (aIb), since a'bx = 0, thus (alb) is realized at 'level" 0; if 0 b', then for

each x e (a I b), x may or may not occur, depending on whether CO E xb' or not. If it is,
then we can interpret the realization at some level, for example at level P(a I b) for sorte
probability measure P on R. This can be justified by the consideration of a random

variable X defined on Q having values 0 on a'b, 1 on ab, and P(aIb) on b', and noting
I] that E(X) = P(aIb).

(v) The viewpoint of three valued logic taken here should not be confused with the

three-valued logic associated with "conditional forms' of McCarthy (1967) which
motivated algebraic investigations referred to in the literature as "conditional logic"

(Guzman and Squier, 1990). "Conditional logic" in the literature sometimes refers to the

non-commutative (regular) extension of Boolean logic to three truth values, the third
denoted u and standing for "undefined" or "non-terminating evaluation". The

[l Jnon-commutativity refers to the logic connectives V and A in the extended logic. This
phenomenon appears in McCarthy (1967) in which it was shown that in order to define

11 computable partial functions, it is necessary to allow undefined expressions in the

recursive formulae. From a logical viewpoint, this amounts to considering a third truth

value "u" for these undefined expressions.

Consider, for example, defining recursively the function fn) = n! on the domain of
non-negative integers. A verbal rule is "if n = 0, then assign the value 1, else assign the

value n(n - 1)!" The statement "If ..., then ..., else If ... then ..." is called a "conditional
expression". In symbols, a conditional expression is denoted

(a, -,ba 4 ., a -4 bn) =CE(aI ,  an;bl,  ,b d,

Li which means "if a1 then b , else if a2 then b2,.., else if a then b Its value is

defined as CE(a,, a ~b,. .bn) b.- where jis the first i such that a. is true.
(1 The evaluation of CE(al,..., an; bl,''" bn) proceeds from left to right, and stops

when the first true ai is found. Of course, the ai and bi are propositions, that is, can only
I| be true (T) or false(F). That is, we are in classical two-valued logic, where the

propositions are elements of a Boolean ring R with the usual connectives. If T and F also

stand for "always true" and "always false", respectively, then the usual Boolean

connectives can be expressed in terms of some simple conditional expressions. Indeed,
using t-uth tables in two-valued logic, it is readily checked that

Li
aAb= (a-4b,T-iF),
a Vb = (a-T,T-ib),

a' =(a-4F,T-4T ),

a' vb=(a-4b,T-4T).



Comparison of various systems of logical operators 91

Now consider the partial function fin) = n! on the set of integers. The recursive

definition of fin) in terms of conditional expressions is

n! = (n = 0 -41, n *O -n(n -1)!).

ThusV 2! =(2 = 0 -1, 2 *-2(2 -1)!) =

2(1!) =2(1 = I -, 1, 1 * 0 -4 1(1 - 1)!)=
2(1) (o = 0-+ , o 4(0 - 1)!) = 2(l)() 2.

Note that (0 - 1)! is undefined. To carry out the computation above, it is necessary to
.. allow the conditional expression to be defined even if the term beyond the one that gives

the value is undefined. Thus in a general CE(a1, .... an; b,..., bn), one should allow

the situation where ai or b. are undefined, which means that the range of truth values of

each "proposition" is extended to [T, u, F). In this logic, the CE are defined as follows:
l. CE(a, .., an; bi,.., bn) = b -

if there is a b - which is "defined", and a, is false for i <j, and if undefined otherwise.
Thus CE(ab, .. . , a ; b,.. b) is undefined, that is, has truth value "u", when either

(i) all the ai are false, or

(ii) ai is false for i < j, aj is true, and bj is undefined, or

(iii) there is an undefined ai before a true a,-

From this, it becomes clear that the extended connectives V and A are not commutative.

P Indeed, from a A b =(a -b, T-F), if a is F and b is u, then the value of a A b is F,

which has truth value F. while b A a has value undefined (by (iii) above) with truth value

[ "u. Similarly, if a is T and b is u, then a V b is T, but b V a is u.
This non-commutative three-valued logic in mechanical computation theory, bearing

the name of "conditional logic" because of the role played by conditional forms in

recursive computations, seeras not to be in the mainstream of multi-valued logic.

3.5 Comparison of various systems of logical operators.

In this section, we are going to examine three systems (', A, V) of basic connectives
on R IR. The truth tables of these systems will be constructed, and the relative merits of

these systems will be discussed. These systems have been chosen because they have been

studied to some extent as algebraic systems. Indeed, the last one (Goodman and

Nguyen's) is elaborated on at length in Chapter 4. Some connectives on R JR arising from

the truth tables of several three-valued logics will be constructed. These particular
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three-valued logics are chosen because of their particular interest and importance in the

field. Our prinicipal tool is Theorem 2 of Section 3.4. and the comments following it with

regard to making the necessary constructions.

VWe begin with the definitions and a bit of discussion of the three systems (', A, V) of

connectives to be examined. The recent paper by Dubois and Prade (1990) is relevant

here. All the systems have the same negation " on RJR, given by (aIb)" = (a'blb).

This is in agreement with the negation operator in the Boolean ring R/Rb'.

.In his 1968 paper, Schay investigated the two systems which follow.

Schay's First System

](alb) A (cld) = ((b' V a)(d' V c)lb V d),

11 (alb) V (cld) = (ab V cdjb V d).

In his original formulation of this system Schay (1968, p. 338), wrote the operations

Islightly differently. Conjunction was given as

But (alb) A (cld) = ((abcd V abd' V cdb')b V d).

(b' V a)(d' V c) = b'd' V bc V ad' V ac,

and
(b'd' Vb'cVad' Vac) A (b Vd)=

b'cd V ad'b V acb V acd=

abcd vabd' v cdb'.

Disjunction was given by

(alb) V (cld) = ((a V c)bd V abd' V cdb'b V d),

and

((a V c)bd V abd' V cdb') A (b V d)=

abd V bcd V abd' V cdb' = ab V cd.

Thus the two formulations are the same. After Schay, Adams (1975) and Calabrese

(1987) proposed this same system.

Schay's Second System

(alb) A (cld) = (aclbd),

(alb) V (cad) = (a V clbd).
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1;
In their work on the foundation of the Bayesian approach to statisticss, Bruno and Gilio
(1985) considered connectives on conditional events corresponding to disjunction of
Schay's first system and to conjunction of Schay's second system.

Goodman and Nguyen's System

1 (aIb) A (cId ) = (acI(a'b V c'd V bd)),

(alb) V (cjd) = (a V cj(ab V cd V bd)).

7 This system arose from Goodman and Nguyen's efforts (1988) to extend operations on R
(events) to those on R IR (conditional events) which would be consistent with conditional

Clprobability, and resulted from realizing the elements of R IR as cosets of principal ideals
of R. These operations are set forth in Section 32.

Below is a table of these three systems of connectives in terms of conditional
Boolean polynomials. Following this table is a table of several well-known three-valued

[logical systems. We make a slight change of notation. For n = 2, the Boolean
polynomials involved are functions of four variables, and it is convenient to denote those
variables A, C, B, and D, rather than as X1, X2, X3, and X4. We remind the reader that for

n = 2, the evaluation of a conditional Boolean polynomial is given by

fig((aIb), (cld)) = (jab, cd, b, a)Ig(ab, cd, b, d)).

Thus if

fig = (AD' v CB' V ACIB V D)
then

[ flg((alb), (ca))= ((abd' V cdb' V abcd)Ib V d).

System A V

Schay'sfirst AD' V CB' V ACIB V D AVCIBVD

i. Schay's second ACIBD A V CIBD

Goodman-Nguyen ACIA'B V C'D VBD A V CIA V C VBD

The conditional Boolean polynomials above for V and A just reflect the formulas
for (a Ib) V (c Id) and (a I b) A (c Id). The polynomials are, of course, not in disjunctive
normal form, but are in much simpler forms. We have not written the relevant

* polynomials for ' since they are all A'BIB, using A and B for the two variables.
In truth tables below, 0, 1, and u are used for (011), (11I), and (010), respectively,

and x and y for (alb) and (cId), respectively.
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p1 Bochvar's three-valued logic.

xAy xVy

0 1 ,0 0 0u 0.1 u
1 0 1 0 1 u I Il u{iU u u Uu u . u uu

x -, y x +---, .

0 I 1 u 0 1 0 U"
1 0 u 1 0 1 U
U u uu u Ou u

I i tfeyting's -hree-valued logic

.,x A y x V y

x . O~ 01 u Ay01 11

u 0 a 0 u u u u u

x -4y x +4
A\Y 0 1 u A\y 0 1 u
0 U U U 0 100

.1 0 1 u 1 0 1 u
•u 0 U u u 0 u I

[ Kleene" s three-valued logic

x: A y x vy

x X" I x\YI 0 1 u Ix\Y 10
0 1 0 0 0 0 0 0 1 u

1O 01u I I I11

u tt U u 0 u u u I u It u

.. X -., y x ,.-4,y
rAOy1 0 1 u x\y 0 1 u

1 0 1 u 1 0 1 u
u Iu I u u u u u
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Lukasiewicz's three-valued logic
x Ay .xV v

jx y, Y 0 1 u A\Y 0 1 u

0 0 01 0 I U
1 1 0 Ol 1 u11II

[]u U-u u u -Iu u u u

|Yv

x -#y x f-fy
A\y 0 1 u X\Y 0 1 u

o7 o o o 0 1 o -
I U Il 1 1 1
u u 1 1 , u .u u

1 ] Sobocinski's three-valued logic

x ~X \ Y1 0 1 u AkY1 0 1 u

1 01 0 1 1 1 1 1 1
O l - u u O l u

x x-#y YX --4 y

1 0 1 A?' 0 0

u 10 1u u 1O 0-uI

L, We will now compute the truth tables for Schay's first system. For all three systems,
we have for'

(011)" = (0,111) =(1il),

(010)' = (O'0O0) = (010).

The disjunction A V CIB V D for that system is simple enough so that its table can be

L. written down easily. To get the table for A, we make the following calculations, which is
just an exercise in evaluating the conditional Boolean polynomial

fig = AD' V CB' V ACI B V D.
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11
(Oil) v (0I1) =(OV0 VOl VI) =(Oil),

(01) V(l1)=(OVOVoi( v)=(Oil),

F (ol) v(00)=(oV0VO l V)=(01),
(1l1) v(o1)=(oV0VOil V I)=(01),
(il1) v (111)=(O VOV 1I Vl) =(III),

(111) V (00) =(1 V o V Oil v o) =(111),

(010) v (Ol1) =( V o V oo V 1) = (Ol1),

(010) V (1I1) =(o V I V lo v ) = (1Il),

(010) v (0I0) = ( V o V oo V ) = (0l0).

Thus we get the following truth tables for Schay's first system.

II x x x V

0 11011 0il l 010 x\y 01 111 010

Il Oi111 01 1 oil II III II . I III II1
010 010 010 Oil 111 i010 010 i 011 1 010

" These tables are recognized as those of Sobocinski's three-valued logic.

I Next we construct the truth tables for Schay's second system. Since the operations
are particularly simple, namely (alb) A (cld = (aclbd) and (alb) V (cad) = (a V clbd),

[these tables can be written down easily. Here are the tables.

xA y xV y

• X 02 il 011 i 010 ?\y Oil Il 0101 i- o-- --- rr U1 nl l I i11ioi oo oil (MI Ll0oIII Oil 0I 1 oill11 010 111 11 ll11 010
010 10 1 010 010 010 010 1 _0_0 _Oi_0_0_0 _

The tables are recongized as those of Bochvar's three valued logic.
LI

Now to the Goodman-Nguyen system. For the connective V for this system, we
make the following calculations using the formula for V for that system.

(011) V (011)= (OVOIOVO V( A 1)) =(01),

(0l) V(111)=(OVlIOv I V(1 AJ))=(Ijl),
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1! (0!1) v 0lO = (o v 0lo v 0 v QJ A 0)) = (0lO),
(11) V (011)= VO il V 0 V Q ,, 1)) = (111),

(111) v (1I1)=(1 v I v v (I A1))= (111),

(ll) v (00)=(I Voll V 0vov Q A))=(111),

(010) V (011) = (0 V 010 VO0V (0 A 1)) = (1)U oio) volI)=(OvlOvlv(oAJ ))= (lI),(010) V (111) = (o V l~ 1 V V(o A1)) = (111),

(010) V (010) = (0 V 010 V oV (0 A 0)) = (o).

Making the analagous calculations for A, and putting the results in the usual form for truth

tables yields

x x X\y Oil 111 010 Ay il III 0i0
1 011 il(l 01 il 01 l 011 -l 01011I1 Oi01I1i 111 0 111 111 00l !1 11 11

010 010 010 011 010 010 010 010 111 010

I] These are recognized as truth tables for ', A, and V, respectively, for Lukaiewicz's and

Kleene's three valued logics. Thee three-valued logic are well established, and serve as a
strong motivation and justification for the Goodman-Nguyen operations ', A, and V on

R IR. Further, the tables for V and A are the truth tables for A and V for Heyting's
three-valued logic. Thus, once R IR is at hand, there are strong reasons from a

I: three-valued logical perspective to define the opmrations V, A, and ' on RIR as done by
Goodman and Nguyen and for making a thorough study of the resulting algebraic system.

To illustrate the method of constructing a conditional Boolean operator of RIR from
a truth table, we construct that operator for Lukasiewicz's -4 and for Sobocinski's

[ disjunction. Following are those truth tables in terms of the elements of 'AV, ftrom which

it is easy to make the necessary calculations.

~x-* y xV~y

x\y Oil 11ll 010 x\y I 111 010
oil III A) I Oil 01 "111 Oil
III ol 111 010 111 11I 111 1119 010 010 111 111 010 Oil 111 010

The conditional Boolean polynomial fig for . is determined by the following values for
*. f and g, which are read off from the table for -e.
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A00, 1,1) =1, A0.0,01, 1) =1,

A0 fO1, 1,1) =1, gco, 1, 1,1) =1,

[ (0, 0, 1.0) =1, 8(0, 0, 1,0) =1I.

A1, 0, 1.1) 0, g(i, 0,1, 1)=1,

Al f1, 1,,1)=11 ,,1 1 )1

JU: 1OO.0) 0, Al0, 0,01,1) = 0,

f01, 0,1) 1, g(0 1, 0, 1) =1,

f00,0) 1, g('0 000)= I.

IiIbus f and g are the Boolean polynomials

f =A'C'BD V A'BD V A'C'BD' VYACBD V A'B'D V A'C'BD'

-AC V AB V B'C V BD'.

and g=A'C'BD VA'CBD V A'C'BD' V AC'BD V ACBD V ACB'D V A'C'BD'

=A'C'BD VACB VA'BD' VAC'D VAC VB'C VB'D'

[1 =A'B(C'D V C V D') V A(C'D V C) V B'C V BD'

-AB V AD V B'C VB'D'

Ii Thus Lukasiewiczs -i is given by the formula

(alb,) -i (6fd) = (ac V a'b V b'c V b'd'Ia'b v ad v b'c v bYd')

Similarly, the f and g for Sobocinski's disjunction have the values

f(0, 0. 1,1) =0, g(0, 0,1, 1) =I,

A fO, 1,1,') = 1. g(0' , 11) =l,

f(O ,0,1 ) =0, g(0, 0, 1,0) =1,
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fI(,o,1,o)=1, g(, ,1, 1=1

I. (o, ,0, 1) =o, g(O,0, 1)=1

(, 1, 0, 1) = 1, g(o, 1, 0, 1) = 1,

f(o, o0, , ) = 0, g(o0, 0, 0,) = 0.

BThus f and g are the polynomials

f= A'BCD v ABC'D V ABCD V ABC'D' V ABCD

=A'BC vAC'D vAB vAD' VB'C
=A(C'D V B V D') V C(A'B V B')

=AVC

g =(A'B'C'D')' = AVB V C V D C V D.

Thus the formula for Sobocinkis disjunctioa is

- (alb) V (d=d) (a V cb V d),

which, of course, we already knew.

We now illustrate the use of the second proof of Theorem 2 in constructing truth

tables for various three-valued logical operators.

] (i) Negation operatms. For the negation operator given by

( (albO = (a'il,) = (a'blb),

the partition induced by (a b) is

wo(alb) = a'b, wi(aib) ab, w,(alb) = b'.

I" Thus

(ab)" = (aa, b)lPa, b)

9where
a(a, b) =a'b
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I. and0
1(a, b) = b = ab ' a'b.

Ado)=(0) AMe3)(1,A

and hence

for ieJ(a)nJ([3)=[0, (0)= 1,

for i .(fl) [u), Vf , (u) =u, and
for iJ .( nJc(a)= [1),T (1) =0

This is Lukasiewicz truth table, for negation (see Section 3-4).

(i) Conjuiction %xp to. The-conjunction operator A of Schas fist system is
~given by

(ab) A (cla) = ((b' V aXd' V c)lb V d)=

T P' ((bv a)(d' V cXbV )I(b V a) = (abd' v cdb' v abcdlb v d).

Thus at, or a for short, is

. wl(ab)w,(cI d) V wi(cI dw(aIb) V wl(alb)wi(cla),

so that

I J(d) = [(I, u), (u. 1), (1,/)}.

" Next,

1=bvd=bdvb'dvbd'
5.

, =C(abcd) V (abc'"a) V (a'bca? V (a'bc'a) V (abd') V (b'cd) V (a'bd') V (b'c'a) .

Tnus

L J(J5AM ((U. 1) (U. 0), (0, 1), (0,0), U. u), (u, 1), (0, u). (u, 0))

and j(D = { (1 ) i o).(O. (1. 1). (u. 1), (,.o u) . )

fq = (.(u, u))

J() nJC(a) = ((1, 0), (0, 1), (0. 0), (0, u), (u, 0))
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Therefore

I for (i,j) e ((I, 1) (u, 1), (1, u))

4rA("J) ufor (0,j) = (us, Us)

0 for (i, ) E ( (1, 0),(0,1), (0, 0), (0, U), (u, 0))1

This is Sobocinski's truth table for conjunction.
pFor Schay's conjunction in his second system,

(alb) A (cd)= (aclbd),
H and one obtains

r1 for (i, j)= (1, 1)

V ̂ (i)= ) U for (i,j) e {(0, U), (U, 0), (u, U 1), (1, U))
f 0 for (i,j)r (0, 0),(0,1),(1,0))

[This is Bochvar' truth function for conjunction.
For the Goodman-Nguyen conjunction,

(aib) A (cId) = (acla'b V c'd V bd) = (abcdla'b V c'd V bd),

Swhence a abcd and so

[1 ~a'b V c'dVbd
= a'b V c'd V (bdac V bd(ac)')
= (abcd) V bda" V a'b v c'd v bdc"

=(abcd) V bda' V (a'bd V a'bd') V (c'db V c'db') V bdc'

= (abcd) V bda' V a'bd' V c'db V c'db'

j = (abcd) V ((a'b)c'd) V ((a'b)cd) V (a'bd') V ((abc'd) V (a'bc'd) V c'db',

so that

U J(P) = ((1, 1), (0, 0), (0, 1), (0, u), (1, 0), (u, 0))

* Hence

aJ(a) )J( ) = ((1, 1)),

Jc(P) = (u, u), (u, 1), (1, u)),

and
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J(P) n Jc(a) = ((0, 0), (0, 1), (0, u), (1, 0), (u, 0)),

so that

1 for (i, j)= (1, 1)

f^A(i, J)= u for (i,j) r (u, u), (u, 1),(1, u)}
0 for (i,j) e (0, 0), (0, 1), (0, u), (1, 0), (u, 0))

which is Lukasiewicz truth table for conjunction (see 3.4).

(iii) Disjunction opratorL Adams and Calabrese's disjunctions are identical to the
-:. disjunction in Schay's first system, which is given by

i W(alb) V (cld) = (ab V cdjb V d).

We have
Ifor (i, j) E { (0, 1), (u, 1), (1, 0), (1, u), (1, 1))

[1(i,f) = u for (i,j) = (u, u)
0 for (i,j) e ((0, 0), (0, u), (u, 0))

Li which is Sobocinski's disjunction.

The disjunction in Schay's second system is

(alb) V (cid) = (a V clbd),

and

I for (i,' j) e { (0, 1), (1, 0), (1, 1)}

L ij(i,fJ) = u for (i,j) 6 (0, u), (u, 0), (u, u), (u, 1), (1, u))
0for (i, j)= (0, 0)

" which is Bochvar's disjunction.
For the Goodman-Nguyen disjunction,

(alb) V (cld) = (a V clab V cd V bd)

=so =(ab V cdlab V cd V bd),

a=abVcd
= (abd" V abdc V abdc') V (cdb' V cdba V cdba')

= (abcd V abd' V cdb' V abc'd V cdba').

Thus

anda) = W, 1), (1 U), (u, 1), (1 0), (0, 1),
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l = ab V cd V bd .

Note that

[I bd =(abcd) V a'bd V bc'd

p = (abcd) V (a'bdc V a'bdc') V a'bc'd),

and thus

J(P = J(A) u (, 0)}

Hence

[i 1 for (i,j) E ((1, 1), (1, u), (u, 1), (1,0), (0, 1))

=i J) u for (i, j) e (u, 0,), (u, us), (0, u))

0 for (i, j) = (0, 0)

which is Lukasiewicz truth table for disjunction.

Each proposed system in three-valued logic has its own rationale. Since logical

operations on conditionals correspond to truth tables "n three-valued logics, the

1comparison of different algebras of conditional events is delicate. However, based on

Rescher's discussion (Rescher, 1969, pp. 131-133), we make some comparioons below. To

Ido that, we first complete the description of the three algebras, Schay's first and second

system, and the Goodman-Nguyen system, by writing down the syntax operations

corresponding to the remaining two truth tables, namely for implication (-4 ) and for

equivalence ( t- ). (Of course x f-- y means (x -4 y) A (y -4 x).) Thus we will have three

palgebras of conditional events, corresponding respectively to the three three-valued logics

Ii of Sobocinski, Bochvar, and Lukasiewicz. In the following tables, the implication and

equivalence are expressed in terms of ', A, and V within each system. As usual, we

1t Jgenerally denote A by juxtaposition. Also, in R, the implication -4 is material
implication. Here are the tables.

Schay's First System

(alb) -4 (cld) = (alb)' V (cld)
(aIb) --4 (cId) = ((a s- c)bdlb V d)

Schay's Second System

(a I b) -. (c d) (a -i c bd)

(a b) s-- (c d) = (a --s c) bd)
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ii "

p Goodman and Nguyen's System

(alb)-i(cid)=(b'd'I1) V (alb)' V (cld)

(alb) f.- (cjd) = ((alb) -. (cld)) A ((cid) -4 (alb))

jl In Heyting's three-valued logic, A and V are the same us Lukasiesicz's, so in the
corresponding algebra, A and V are the same as those of Goodman-Nguyen. Heyting's

[3 negation is different, and is defined by

(alb)' = (a'bl).

[1Goodman and Nguyens A and V make R IR into a lattice, and on that lattice, Heytins's

negation turns out to be a pseudo-complementation, making R IR into a Stone Algebra.

The details are in Chapte 4. The operations on RJR corresponding to Heyting's -4 and

are

-- e (a b) -4 (cla)= b'd' V a'b V (cd)

U (alb) +-(cld)= b'd' V ((a -c)bdla'b V c'd V bd)

Now, examining the truth tables of the conjunction and disjunction operators in

Schay's first and second systems, we see that they all violate plausible conditions for

multi-valued logics. First, viewing u as lying between 0 and 1, any conjunction A

should be such that x A y is the "falest" of x and y. Likewise, any disjunction V

should yield the "truest" of x and y (Rescher, 1969, p. 133). Thus for Schay's first

[ system,

u A 1 and 1 A u should be 0 or u, but not 1, and

OVu and uVO should be 1 or u, butnot 0.

Likewise, for Schay's second system,

u A0 and 0 Au should be 0 but not u, and

uV I and I V u should be 1, but not u.

Finally, one can simply require that each logical operator on R IR should satisfy a
list of reasonable properties. For example, let A denote a binary operator on R IR
representing "conjunction." Then the following is such a list:

P1  (all) A (cl 1) = (a A c 1) (A extends conjunction of unconditional events),

S;P2 (alb) A (cid) (alb), (cld),
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.

P3  A is associative,

P4  A is commutative,

P5  A is idempotent ((aib) A (ajb)) = (aib)),
P6  (alb) A o) = 0,
P7  (alb) A 1) = (alb),

" e'P (alb) A (cjb) = (acib),
P9  (alb) A b = ab (modus ponens),

[1 P10 (a bc) A (bIc) = (abIc) (a chaining property).

All of Schay, Adams, and Calabreses conjunction operators fail to satisfy P2.

[I Their corresponding disjunction operators fail to satisfy the dual property

(alb) V (cjd)) > (alb), (cjd).
11 In terms of truth tables, A satisfies P2  if and only if i A J) min(i, J), for

i,je {0, u, 1).

If A satisfies PI' P2 and P4, then the corresponding truth table must be one of

the following four.

A1  0 u I A2  0 u 1

ii 0 0 0 0 0 0 0 0
u 0 0 0 u 0 0 u

p 1 0 0 1 1 0 u 1

A3  0 u I A, 0 u 1

0 0 0 0 0 0 0 0

u 0 u 0 u 0 u U

1 0 0 1 1 0 u 1

The table for A4 is Lukasiewicz's truth table for conjunction, which corresponds to

fthe Goodman-Nguyen conjunction operator. Using the Theorem 2 of 3.4, we get the

operations

(alb) A1 (cld) = abcd,
(a b) A2 (c I d) = (abcd I abcd V a'b V c'd V b'd') ,

(a b) A3 (c Id)) = (abcdlb V d),
(aib) A4 (cId) = (acla'b V c'd V bd).

Now it is easily checked that
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A1 does not satisfy PS, P7, P8 and P ;

A2 does not satisfy P5 , P8 ;
A3 does not satisfy P7 .

Only A4 satisfies all ten properties!

I :In summary, in his pioneering work on logical conditional operators, Schay (1968)

proposed, at the syntax level, two systems. As Dubois and Prade (1989, 1990) have

Sppointed out, and as we proved in Sections 3.4 and 3.5, Schay's systems correspond

precisely to two well-known three-valued semantics, namely those of Sobocinski and

Bochvar. The algebraic approach to logical operations on conditionals presented in

[1 Section 3.2 leads to a syntactic system corresponding to Lukasiewicz's three-valued logic.

The comparisons above suggest that each choice of a logical system should be dictated by

Ii the situation at hand. This is similar to the situation in fuzzy logic (see Chapter 7). In

particular, the choice between Lukasiewicz and Sobocinskis logics is a matter of debate as

far as appropriate semantics for conditionals is concerned. See Chapter 6 for more details.

In this book we take the viewpoint of Lukasiewicz, and investigate the mathematics ofu: conditionals corresponding to his three-valued logic.

3.6 Connection with qualitative probability

Qualitative (or comparative subjective, or objective propensity) probability is

motivated by the desire to make numerical probability measures compatible with

. non-numerical probability comparisons. For a general exposition, see Fine (1973, Chapter

II). See also Fishburn (1983), Villegas (1967), Domotor (1969) and Suppes (1973) for

Ln further background.

In general, qualitative probability is a kind of order relation -< on a given Boolean

I ring R. For a,b E R, the relation a -( b is interpreted as "b is at leastas probable as

a." Then, for a - b, one seeks probability measures P on R such that P(a) < P(b).
More strongly, one attempts to determine a qualitative probability < and

quantitative probability measures P on R such that a < b if and only if P(a) < P(b) for

all a, b E R. In this case, P is called a representative of <. In order to achieve this,

L usually an axiom of comparability is assumed such as a ' b or b - a for all a, b E R.

In the following, We discuss Koopman's conditional qualitative probability system

(Koopman, 1940). Interestingly, Koopman basically avoids use of any axiom of

comparability -- at least initially. Koopman's axioms follow (Koopman, 1960, page 275).

They are axioms for a system such as our R IR.
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OR V Axiom of Verified Continge cy

(alb) - (cjc).

II I Axiom of Implication

If (clc) - (aIb), then c a.

R Axiom of Reflexivity.
~(a Ib) -( (a [b)"

T Axiom of Transitivity

If (aIb) . (cld), and (cld) " (ejV), then (ajb) -4 (elf).

JJ A Axiom of AntisymnetrY

If (alb).< (cId), then (c'd (a'b).

C Axiom of Composition

i C1 If (a b) -( (cId) and (elab) (f Cfcd), then (aeIb) .4 (cfAd).

C2 If (a b) (fIcd) and (elab) -< c d, then (aeib) -( (cfjd).

D Axioms of Decomposition

Suppose that (acIb) -< (dfIe). If either of (aIb) or (cIab) is >- either of (die)

or (f Ide), then the remaining one of (a I b) and (cIab) is 4 the remaining one of (d e)

and (fl de).

P Axioms of Alternative Presmption

Ii If (albc) (dle) and (aI(bc)'). 4(dIe), then (a" ,.

Ii; S Axioms of Subdivision

For any integer n, let the propositions a,, a2 , ... , an , b1 , b2 , .... bN be such that

aa.-= b-b.=O for ioj; a=aVa2 V...Van*O; b=blvb2 V...Vbn& 0 ;

(aj I a) ( ... Ia (anIa); (b Ib) . (b2 Ib).4 ... 4 (b nb). Then (aIa) -( (bn1b).

L.! Koopman derives many properties of his axioms. Our purpose here is to show that

the relation 5 on R IR that we introduced in Section 3.3 satisfies all but the first and last

9 of Koopman's axioms system.
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Theorem. Let R be a Boolean algebra. Then < defined on R IR by (alb): (cld) if

and only if (aIb) = (alb)(cId), satisfies .foopman's axiom 1, R, T, A, C, D, P, and S. It

does not satisfy his axioms V and S.

l Proof. Throughout we will use our critc),,a that (alb) (c Id) if and only if

ab cd and c'd a'b. (Theorem 1, Section D'I,3

I Axiom V is clearly false. Just pick : ab > c

Axioms I and R follow almost triviar-y .!,z. our ,riteion above, and axiom T is

[] noted immediately after the definition of 5 in &Aiion 3.3.

Axiom A is part of our criterion for (ab) - i d).

" To verify the first part of C, let (aIb) (: :..' Iid (e!ab) - VIcd). Then

ab cd,

[1 c'd a'b,

and 
eab fcd ,

f'cd e'ab.

To get (aelb) < (cfI d), we need

L aeb5 fd

and

[. (cj)'d 5 (ae)'b.

. The first we have, and from fcd < e'ab, we get

eVa' Vb' fVc'Vd',

and from c'd5 <a'b we get

i a' VbgcVd'.

Thus
r (eVa' V b')(,-,' Vb) (fVc' Va')(cVd'),

or

e(a' Vb) Va' :5f(c Vd') Vd',

or
a' Veb <d' kfc,

or
a(e' VbV) :d(c' vf'),
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ii

which we needed.
For the second part of C, let (a ib) < (f cd) and (elab) < (c d). Then

F} ab<fcd,

f'cd - a'b,

lI eab - cd,

and
We c'd < e'ab.
We need

1aeb<5 cfd

and

S(cf)' d < (ae)'b.

Since ab 5 cfd, certainly aeb < cfd. So we need only that

H(cf)'d 5 (ae)'b,

or equivalently that

aeVb'5 cfVd'.

Ii Since

f'cd 5 a'b,

[ aV b' <fV c' V d',

and since

c'd 5 e'ab,

eVa' V Vb" <cVd'.

Ii Thus
(a V b')(e V a' V b')s (f (V c' V d')(c V d"),

[! and so

or'. (a V b')e V b' <f(c V d') V d',

ae V b' <fc V d',
or tnally

which we needed. 
(c)'d g (ae)'b,

To verify D, the axioms of decomposition, suppose that (ac b) < (4!le) and

(alb) - (dIe). We need that (c ab) < (fide). Thus
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I"
Ii

]acb : dfe,

(dj)'e : (ac)'b,

de - all,

and
[~. 'b:5d'e.
We need

cab <fde

f.de -c'ab,

and the first we have. From

S(dO'e < (ac)'b

we have

a (d' V f')e < (a' V c')b,
and since

w hde < ab,

we have 0
(d' Vf')de < (a' V c')ab,

or

Sde:5 c" ab,
which we needed.

Assume now that (alb) (ft de), and that we have always that (actb) _ (df e). We

needthat (clab) (dle). Sowearegiven

v fdT.5 ab,

a'b <fde,

I acb dfe,

and

pT (df)'e : (ac)'b,

L and we want

cab < de

and

d'e 5 c'ab.

Since acb < dfe, then cab < de. So we only need that

d'e c'ab.
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I :

*From

(df)'e (ac)'b,

and"'. -d a'b <f' de,

we have
(d' Vf)e (a' V c')b

and

SfVd' Ve' a vb',

so
~~~(d' Vfl)e(fV d" V e') <(a" V c')b(a Vb').

Thus

(d' Vf)e(f V d') (a' V c')ab,

or

d" e c'ab,

which is the inequality we needed. The other two parts are similar and their proofs are

left to the reader.

To verify axiom P, let (albc) < (die) and (aj(bc)') de. Then

abc< de,

d'e < a'bc

a(bc)' < de,

and

d' e a'(bc)'.

We need that

I. (alc) < (die),

or that

.' -ac: de

and

d'e < dc.

Now d'e < a'c since d'e5 <a'bc. To get ac5 <de, from a(bc)' < de we have
L a(b' V c') de.

Then
* - ab' V ac' < de,

whence
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ab' < de.

(I We have from above that

abc - de.

Ii Then

p ab'c V abc = ac5 ;de

and this proof is complete.

li The axiom. of subdivision obviously does not hold for our . o

II

I.i

I.

.

I ,
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CHAPTER 4

ALGEBRAIC STRUCTURE OF CONDITIONAL EVETS

This chapter is devoted to the study of the space of conditionals R IR as an
algebraic system. Equipped with the logical operations V, A, and ' introduced in
Chapter 3, it is a system generalizing Boolean algebras, or Boolean rings, and provides a
vehicle for manipulating conditional events, analogous to the manipulation of events in
Boolean algebras. Further, it represents a departure from classical logic, and from

$1 quantum logic. First, in Section 4.1, we examine the basic algebraic properties of R IR,
concentrating on its similarities and its differences with those of Boolean algebra. In
Section 4.2, R IR is characterized as an abstract algebraic system, and a Stone
Represen. " n Theorem is established, generalizing Stone's theorem for Boolean algebras.
In Section 4.3, RIR is identified with a semi-simple MV algebra via the work of Belluce

*(1986), yielding a connection with multi-valued logic, and providing yet another Stone
-) Representation Theorem.

4.1 Basic algebraic properties

L We now turn to a detailed examination of RIR as an algebraic system. Recall that
RIR is the set of all cosets of all principal ideals a + Rb of the Boolean ring R, and we

I. have adopted the notation (alb) for the coset a + Rb'. In the Boolean ring R, there are
the usual operations V, A, +, and ', and R has a 0 and a 1. We assume as known the

j lbasic properties of Boolean rings, or Boolean algebras. Corresponding operations V, A,
and ' have been defined on R IR, and some of their properties have been noted in

earlier sections. Specifically,

-, (1) (alb) V (cla) = ((ac)l(ab V cd v ba)) = (abv cdlabv cd va'bc'd),
i (2) (alb) A (cld)=((aAc)(a'b V c'd V ba))= (abcdla'b V c'd V abd),

(3) (al)" = (a Ib),
(4) (alb) + (cld) = (a + cibd).

Above, if x, y E R, then xy is written for x A y. Note that the symbols V, A, +
and ' are used both as operations in the Boolean ring R and as operations in R IR. The
context should always make it clear what operation is meant. The most basic and
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elementary algebraic properties of RIR are these:

Theorem 1. The following hold in RI P,
(1) (a b) V (alb) = (alb) (V is idempotent);

(2) (a b) & (alb) = (aib) (A is iderporent);

1 (3) (a b) V (cld)= (cla) V (alb) (V is commutatve);

(4) (a b) A (cjd) = (c d) A (alb) (A is commutative);

(5) (alb) - (cld =(cld) + (ab) (+ is commutative);

1) (6) ((a b) v (c d)) V (ejf)= (alb) V (cld V e l) (V is associative);
(7) ((ab) A (cld)) A (e) = (aib) A (cld A e V) (A is associative);

(8) ((a b) + (cld)) + (ejj) = (aIb) + (cl I + elt) (+ is associative);

(9) (alb)'" = (ab) ('is involuive).

I Proof. The proofs of these are routine from the definitions of the operation.

However, we give proofs of (1), (4), (5), (6), (7) and (9) as illustrations of elementary

manipulations in R JR.

(1) (alb) V (alb) = ((aVa)I(ab v ab V b)) = (aIb).

Li (4) (alb) A(cla) = (abl(a'b Vc'dVlbd))= (baI(c'dVa'bVdb))= (cd) V(alb).

p (5) (alb) + (cla) = ((a + c)Ica) = ((c + a)ldc) = (cld) + Calb).

(7) ((alb) A (cId)) A (e [) = (acl(a'b V c'd V b)) A (e[)

i = (a )'Ca', v c'd v, a) VefV (a', V c', V &M.
alb, A (c ld A el)) = (aIb) A (ceI(c'd V e'fV d))

,, = (acel(a'b V (ce)'(c'd V e'f V #) V b(c'd V e'f V d)).

- Thus we need to show that

(ac)'(a'b V c'd V ba) v e'f V (a'b V c'd V bdf=
I"

(a'b V (ce)'(c'd V e'f V dj) V b(c'd V e'f V 4)).
S."

SThe first is
Li

(ac)'a'b V (ac)'c'd V (ac)'bd V e'f V a'bf V c'dyV bdf=

a'b v c'a'b V a'c'd V c'd V a'bd v c'bd v e'f v a'bf V c'df V bdf=

a'b V c'd V e'fV bdf,

and the second is
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a'b V (ce)'c'd V (ce)'e'f V (ce)'df V bc'd V be'f V bdf=

F' a'b V c'd V e'c'd V c'e'f V e'f V c'df V e'df Vbc'd V be'f V bdf=

a'b V c'd V e'f V bdf.

(9) (alb) = (a ' Ib)' = (a" 1b) = (alb). o

L None of the properties (1) - (9) above involve interactions between the various

operations. We will address those properties momentarily. First, R IR has some special

'i elements, (01i) and (I 11), which act as a "zero" and "one" should act. In addition, there

is the "indeterminate" element (010) = (I 10) = R.

Theorem 2. The elements (01), (111) and (010) satisfy the following properties.

1. (1) (alb) + (01l) = (alb) ((011) is an additive identity);

(2) (a I b) A (111) = (a I b) ((1 1) is a multiplicative identity);

(3) (alb) A (01I) =(011);

(4) (01)'= (111);
t;(5) (111)'= (011);

(6) (alb) = ab V (b' A (010));

(7) The unique element (alb) in RIR such that (a lb)' = (alb) is (010).

1.. Proof. Again, these properties are straightforward. For example,

ii and (alb) A (111)= (aI(a'b V 0 V b)) = (alb),

(alb) A (011) (0(a'b V I V b)) = (011). 0

Note that there are no other additive or multiplicative identities other than (01)

and (111). If x and y were two additive identities, then x + y = x = y, and similarly

for multiplicative identities.

The following theorem provides some connections between the various operations.

They are fundamental ones.

Theorem 3. The following hold in R IR.

(1) (alb) A (cld V ejf) = ((a Ib) A (cld)) V ((a Ib) A (elIf)) (A distributes over V);
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(2) (alb) V ((cld) A (elf)) = ((aIb) V (cId)) A ((aIb) V (elf)) (V distributes over A);['
(3) ((alb) V (cld))'= (aj A (cld)';

v (4) ((alb) A(cld))' = (ab)' V (cjd)' ((3) and (4) are DeMorgan's laws).

Proof. We will prove (1) and (3). Then we will see that (2) and (4) are immediate
[p consequences of (1) and (3). For (1),

(aIb) A(cId V elf) = (alb) A (c V e)I(cd VefV d) =

a(c V e) I(a'b V c'e'(cd V ef V 4) V b(cd V ef V dj) =

i a(c V e)I(a'b V c'e'dfV bcd V befV bdj).
Now

((alb) A (cid)) V ((aIb) A (elf)) = (acl(a'b V c'dV bd)) V (ael (a'b V e'fV bf)) =

P (a(c V e) I(acbd V aebf V a'b V c'de'f v c'dbf v bdef V bd)

(a(c V e)I(abcd V abef V a'b V c'de'f V bd).

Thus, we need to show that

{ a'b V c'e'df V bcd V bef V bdf = abcd V abef V a'b V c'de'f V bdf.

Clearly, the left side contains the right. But since abcd V a'b contains bcd, and
I; abef V a'b contains bef, the right side contains the left. To prove (3), note that

((aib) V (cid))' = ((a V c)I(ab V cd V bd))' = (a'c' I(ab V cd V bd)),

and

(aIb)' A (cId)' = (a'c' I(ab %, cd V bd)).

The equations

p ((alb) V (cjd A elf)) = ((alb) V (cjd A ej))"

Li ((alb)' A (cid A ejf)')' = ((alb) V (cld)) A ((alb) V (elt)),

and

((aIb) A (c I))' = ((aIb)" A (cd)")' a

((aIb)' V (cld)')'' = (aIb)' V (cId)',
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Sestablish (2) and (4).

We now come to some negative aspects of R IR. These center around the
operations + and '. First, R I R does not have negatives (or additive inverses). That is,

given (alb) in RIR, there does not necessarily exist an element (cid) such that
(a lb) +(cld)= (011). Indeed, if so, then

(alb) + (cid) =((a + c)lbd) = (O11),

whence bd =l, so b =1 and d = 1. In that case, (alb)=(a 11), and it is its own

negative. Thus the elements in R IR with negatives are precisely those of the form

(all). In R, a + a = 0. This does not carry over to RIR. For example (alb) + (alb)=
f,[ (0b), which is not (01i) unless b = 1. That is, R iR is not of characteristic 2.

Secondly, A does not distribute over +. A simple example is this:

U (lIb)((lId) + (I V)) # (Ilb)(lId) + (llb)(ll),

P the first being (01 df) and the second being (0 bd).

Thirdly, / is not a true complement for RIR. That is, (aib) V (a b)' : (11). In

fact,

(aIb) V (aIb)' = (aib) V (a' Ib) = (Il(ab V a'b V b)) = (ll(a V b)),

which is not (111) unless a V b = 1. Also,

(alb) A (alb)' = (O((a'b V ab V b))) = (0lb) (011)

unless b = 1.

These negative aspects of R IR are summed up in the following theorem. In
particular, R IR is far from being a Boolean ring.

Tieorem 4. The following hold:

1 (1) R IR is not a group under + ; specifically, not every element has a negative;

, (2) A does not distribute over + ;

(3) ' is not a complementation operator on R IR; specifically, (a I b) V (a Ib)' is

not necessarily (I 11), and (alb) A (alb)' is not necessarily (01i).

(4) RIR is not of characteristic 2, that is, (aIb) + (aIb) is not necessarily (011).

In a Boolean ring, the four basic operations, V, A, +, and ' are not independent.
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For example, a + b = a'b V ab', which corresponds to the "exclusive or". This relation

also holds in RIR as we have noted back in Section 3.2 Thus, properties of + in RIR

are reflections of properties of V, A, and and '. We have just noted some negative

properties of +, indicating that it will be of at best limited importance and interest in

R jR. For these reasons, and because V, A, and ' are more conceptually fundamental

operations in logic and probability, we will drop the operation + from our considerations.

In Section 3.3, an order relation on R IR was introduced This order relation will

now be examined in some detail. We first establish the appropriate language in which to

discuss this topic. A good reference for the following material is Grtzer (1978).

L Definition 1. A partially ordered set is a set L with a relation on L such that for all

x,y,z eL,

(1) x5 <x (< is reflexive);

(2) ifx5yandy5x, thenx=y (5isanti-symmetric);

(3) if x:5 y and y5 <z, then x5 <z (5 is transitive).

This partially ordered set is denoted (L, : ), or just L if there is no confusion as to

the partial order under consideration. Let (L, :5) be a partially ordered set, and let S be

a subset of L. The element x is an upper bound of S if s < x for every S E S. The

element x is a least upper bound, or supremum, or simply sup, of S if x is an upper

bound and x 5 y for any upper bound y of S. Lower bounds, and greatest lower
bounds, or infima, or inf are defined analogously.

Definition 2. A lattice is a partially ordered set L such that every pair (a,b) of elements

of L has a sup and an inf.

The sup of (a,b) is usually denoted a V b and the inf by a A b. Note that this

makes sense, namely that (a,b) has only one sup. If x and y were both sups, then x <

y since x 5 any element y which is all elements in (a,b). Thus x = y. Similarly

infs are unique. Now V and A are two binary operations on L, and they satisfy the

following conditions.

(1) x V x = x and X A X = X (V and A are idempotent);

(2) x V y = y V x and x A y = yAx (V and A are commutative);

(3) (xVy) Vz=xV(y Vz) and (xAy) Az =x A(y Az) (VandAareassociative).

(4) x V (x A y) = x and x A (x V y) = x (V and A satisfy the absorption identities).
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Property (1) follows from reflexivity and anti-symmetry, and (2) and (3) directly
from the definitions of sups and infs. To get x V (x A y) = x in (4), note that x x by
-'eflexivity, and x > x A y by definition of x A y, so x is an upper bound of x and

1] A y. If z is another such upper bound and z < the upper bound x, then since z > x,
z = x. The other part of (4) follows similarly. Th- following two properties should also
be noted.

p(5) x 2 x A yand x:5x Vy,
Ii (6) x=xVy ifandonlyif y=xAy.

LProperty (5) is immediate from the definitions of upper and lower bounds, and (6) is
a consequence of (4). For example, if x =.z V y, then by (4), y A (x V y) = y = y A.x. The

Ijother half of (6) follows similarly. Actually, the absorption identities imply that V and A
are idempotent, but we will not concern ourselves with such technical niceties here.

We provide the following theorem and its proof, since it will hold for our R IR, and
the proof in general is as easy as for the special case of R IR. We have already noted its
converse.

* "Thaeorem 5. If L is a non-empty set with two binary operations V and A which satisfy

I. (1)-(4) above, then L is a lattice under the partial order given by x < y if x = x A y.

Proof. First we get < to be a partial order on L. x: <x since x A x = x. If x:5 y

and y < z, then

x A z = (x Ay) Az = x A y Az) = x Ay =x,

so x:z. If x5y and y_<x,then x=xAy and y=yAx, so x=y. Nowwe show
that xAy is the infof {x,yl and x Vy is the sup of (x,y}. xA (xAy) =x Ay, so
x A y : x, and similarly x A y < y, so x A y is a lower bound of (x,y). If z <_ x and
z y,then

T.. x Az = z = y Az = y Ax AzU
so z : x A y. Thus x A y is the inf of {x,y). By one of the absorption laws, x A (x V y)
=x, so x<_xVy, and similarly y <xVy. If x. z and y <z, then x=x A z and
y=y Az. In turn, z = z Vx = z Vy, implying

z=zVz= (zV,) V(zVy) = z V (xV y),

implying x Vy z, that is that x Vy is the sup of {x,y), and (L, <) is a lattice. t1
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1
Thus we have the following situation. If (L, ) is a lattice, then (L, V, A) satisfies

properties (1) - (4) above, where V and A are defined by aVb = supfa,b) and

aAb = inf{a,b). Conversely, if L(V, A) satisfies (1) - (4) above, then (L, ) is a lattice,

where < is defined by a < b if a = ab. Such an algebra (L, V, A) is also called a lattice.

Thus a lattice (L, -) yields an algebra (L, V, A) satisfying (1) - (4) above, and an algebra

(L, V, A) satisfying (1) - (4) yields a lattice (L, 5). A critical fact is that these procedures
-".> are reciprocals of each other. Thus the concept of lattice, and the concept of an algebra

with two binary operations satisfying (1) - (4) are the same. We refer the reader to

Ii Gratzer (1978) for details.

Now back to R IR. The two operations V and A on R IR do indeed satisfy (1) through

U (4) above. We have already observed that (1), (2), and (3), hold. For (4),

(alb) V ((alb) A (cld))
(I. = (alb) V (alb)) A ((alb) V (Cld))

= (aib) A (aVcJ(ab V cd V bd))

= (aI(a'b V (ac)'A(ab V cd V bd) V b(ab V cd V bd))
= (aI((a'b V a'c'bd V ab V bcd V bd))

L = (aI((a'b V ab V bd)) = (alb).

The other absorption law follows similarly. Thus by Theorem 5, (R IR, Q) is a lattice. In

!!considerations of R IR, emphasis is usually more on V and A than on , the former
being the more fundamental concepts for us. Thus we prefer the following statement.

Theorem 6. (R IR, V, A) is a lattice.

If L is a lattice and L itself has a sup and an inf, then that sup is denoted I and

that infis denoted 0. In that case, L is called a lattice with 0 and 1, or a bounded

lattice. Note now that RIR is a bounded lattice. The 1 is the element (1ll) and the

0 is the element (011). To see this, recall our criteria that (aIb) (cld), namely that

] ac<5cd and c'd a'b. Thus (alb)-(11) since ab 1 and O a'b. Thus (111)
is the 1 of the lattice RIR. Similarly (01I) is the 0 of it, and RIR is indeed a

T" bounded lattice.
A lattice is called distributive if the following conditions hold.

x A 0Y V z) : (x A y) V (x A z);

x V (y A z) = (x V y) A (x V z).

We have seen that these distributive laws do hold in R IR, so we have the following

theorem.
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I"

Theorem 7. (R IR, V, A) is a bounded distributive lattice. The 0 is the element (0I),

and the 1 is the element (I1jl).

In a bounded lattice, an element x is a complement of y if x A y = 0 and x V y=

1. Complements, if they exist, are unique in bounded distributive lattices. The

complement of x is usually denoted x'. Note that x" = x. A bounded lattice in which

every element has a complement is called a complemented lattice. A complemented

distributive lattice satisfies DeMorgan's laws:

(x Vy)' :x' Ay';

[ (xAy)' x' Vy'.

(1 The details may be found in Grdtzer (1978), and we will not pursue them there, mainly

because R JR, our lattice of interest is not complemented. Were it complemented, then

the complement (c Id) of (01 b) would have the property that

(cId) V (01b) = (cdld) V (01b) = (111) = (cdlcd V bd),

whence cd = I = c = d. But the complement of (1i1) must then be (Ob), but is (01)

instead. Thus no element of the form (01 b) can have a complement unless b = 1. In

particular, our operator " on R iR is not a complementation operator. There does not

exist a complementation operator on R IR with respect to V and A.
There is a weaker notion than complement. In a bounded lattice, an element x* is

a pseudocomplement of x if x V y* = 0, and if x A y = 0 implies that y < x*. An element

can have at most one pseudocomplement; if a and b are pseudocomplements of x, then a <

b and b a, so a = b. Thus a pseudocomplement of an element x is that unique largest

element whose intersection with x is 0. A pseudocomplemented lattice is one in which

every element has a pseudocomplement.

Definition 3. A Stone algebra L is a distributive pseudocomplemented (bounded) lattice

which satisfies Stone's identity: for all a e L,

'a* Va"-*

It is a fact that in any Stone algebra, the pseudocomplementation operator *

satisfies DeMorgan's laws (Gr~tzer, pages 113, 119). A crucial fact is that R IR is a Stone

algebra, and this is not entirely obvious.

Theorem 8. (R IR, V, A) is a Stone algebra. The pseudocomplement (a I b)° of an element

(alb)is(a'b[1) thatis a'b. DeMorgan's laws hold for "
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.

F ((aJb) V (cld))*= (alb)* A (c d)";

((a lb) A (cjd))* = (ajb)° V (cla)*;

Proof. First, we show that (a b)* = (a'b 1i).

1 (alb) A (a'bil) = (Oa'b V aVb" Vb) = (011).

If (cId) A (aIb) = (011), then (cal(c'd V a'b V bd)) = (011). Now, from the

characterization of < on R R, (cld) < (a'b11) if and orly if cd5 <a'b and aVb' < c'd.

We have c'd V a'b V bd = I and ac = 0. From the equation

Sc'd V a'b V bd = 1,

by first conjoining with b' and then separately with d' we get b'< c'd, and d' < a'b.

Thus b' < c', aVb' 5 d, and since ac = 0, also a < c'. We have then that aVb' < c'd. It

remains to get cd5 <a'b: But, from ac 0 we hav c:5 a' and from b < c' we have c <

Fb. Thus cd5a'b, and so (alb)* = (ab[l).

DeMorgan's laws can be verified easily now that we have an explicit formula for .

((a lb) V (cId))* = ((aVcI(ab V cd V bdl)) = ((a'"c')(ab V cd V ba)11) = (a'c'bdl),

(alb)* A (cld)* = (a'bj1) A (c'dl) = (a'c'bd 1l).

The other part of DeMorgan's laws follows similarly. n

. Remark. Thus we have that R IR has a rather rich algebraic structure, being a

pseudo-complemented distributive lattice, in fact, a Stone algebra. However, it is not

complemented, that is, does not have an operator # on it such that a* A a = 0 and

a' V a = 1 for all a. This situation is somewhat different from that of quantum logic.

Indeed, a space of quantum events is a collection of closed subspaces of some complex

Hilbert space and its algebraic structure is also that of a lattice, but of a non-distributive

" yet complemented one. (See Gudder, 1988.) As pointed out in Section 3.5, the truth table

of the pseudocomplementation operator * on R IR is the truth table of Heyting's

negation operator in his three-valued logic.

The structure R IR is one generalization of Boolean algebras. It is a special kind of

Stone algebra, and will be so characterized in the next section. But it can be viewed other

ways, depending on which operations on R IR to investigate. For example, looking at

other operations on R IR in conjunction with our V and A makes R I R into a semi-simple
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MV algebra, and this will be discussed with Section 4.3, with an attendant Stone

representation theorem.

4.2 An abstraction of the space of conditional events

Section 4.1 culminated with the theorem that R IR is a Stone algebra. One way to
give an algebraic characterization of R IR is to identify it amofig Stone algebras. That is

what we will do. Thus we need to determine just what conditions on Stone algebras make

them precisely of the form R I R. For such a characterization to be a good one, the

conditions added should be succinct and conceptionally pleasing, involving fundamental

entities associated with Stone algebras. Two such entities are in the following definition.

Definition 1. Let L be a Stone algebra and * its pseudo-complementation operator. The

skeleton of L is the set L = (a* a eL). The dense set of L is the kernel of'

D(L) = [a :a E L, a* = 0).

We need a number of properties of Vi and D = D(L). A more complete discussion

may be found in Gr~tzer (1978).

I: Theorem 1. Let L be a Stone algebra. The following hold:

(1) a5 _a";

(2) a :- b implies that a* > b*;

V"(3) a* = a"';

(4) a e L' if and only if a = a";

(S) (a Ab)=a* Vb';

(6) (a V b)= a* A b';

Proof. (I) and (2) follow immediately from the definition of pseudocomplement.

(1) and (2) imply that a' __ a*, and (1) applied to a* yields a* < a"'. Thus (3) holds. If

a E L', then a = b', so a*" = b"=b = a. If a = a", then a = (a*)', whence a E L', so

(4) holds.

To prove (5), we have

(a A b) A (a* V b') = (a A b a') V (a A b A b') = 0 v 0=0.

If (a Ab) Ax = 0,then (bAx) Aa =0, sothat (bAx) <a'. Thus
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'" (b Ax)Aa**:< a' A a** = 0,

so (x A a**) A b = 0, implying that x A a** <, b*. By the Stone identity, a* V a**.= 1, and

thus
x = x A I = x A (a* V a**) = (x A a*) V (x A a**) < a* V b*.

I Thus (5) is proved.

To prove (6),

(a V b) A (a* A b*) = (a A a* A b*) V (b a* A b*) =0 V 0 = 0.

(I If x A (a V b) = 0, then x:5 (a V b)*. But a V b 2 a implies that (a V b)* : a*, so x:5 a*,
and similarly x:5 b*, whence x:5 a* A b*. Thus (a V b)* = a* A b*, and (6) is proved, a

The properties in the theorem yield the following fundamental facts about L* and D.

Theorem 2. Let L be a Stone algebra. Then

(1) L* is a Boolean algebra whose 0 and I are those of L;

(2) D is a filter (dual ideal) and I e D. In particular, D is a distributive lattice

1. with 1.

Proof. Clearly 0* = 1 and 1' = 0, so that 0 and I are in L. From Theorem 1,

(a* A b*) = (a V b)* and (a* V b*) = (a A b)*, so that L* is a sublattice of L. Since a* V a**
= 1, * is a complementation operitor on L. Thus L is a Boolean algebra.

If a,bE D, then (a Vb)" =a* Ab* =0 A0=0and(a Ab)*=a* Vb*=0,soD isa

sublattice. If a E D, then for all x E L, (a V x)* = a* A x* = 0 A x* = 0, whence D is a
filter. Since I* = 0, 1 e D.

I-.

Now we turn to R IR, identify its skeleton and dense set, and note some of their
Ispecial properties. Recall that the pseudocomplementation operator * on R IR is given

by (aIb)' = (a'b[1). Thus it is clear that (RJR)* = [a l1 a - R), which we denote by
R11. For (aIb)* tobe (0 1), we must have (a'b1l)=(0i1),so a'b=0. Thus b a,
so (a I b) = (b i b) = (Jib). It follows that D(RIR) = {ljb: b - R), which we denote by

1 IR. Thus we have the following theorem.

Theorem 3. The skeleton of RIR is (RIR)* = ((a 1I) : a E R) = RI1 = R, and the dense
setofRIR isD(RR) = (lIla) "ae R) = ((ala) :aER} = IiR.

Both R 1I and I IR are copies of R. In fact, the elements of R I I are identified with
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1.

*the (unconditional) events of R. The mapping R11 -4 IIR : (all)-, (1ia) is clearly a

bijection. Since

(lja) V(Ilb)=(1l(aVb)) and (lla) A(lJb)=(lJ(aAb)),

that mapping preserves V and A. Further, (011) and (111) of RI1 go to (110) and (11),

I respectively of 11 R, and (all)' = (a' I) goes to (I Ia'). Thus.I !R is a Boolean algebra

with its 0 and 1 the elements (I0) and (11), respectively, and with (IIa)' = (IIa').
fj Thus the dense set of R JR is also a Boolean algebra, and is isomorphic to the skeleton of

RIR. Since lJR is a Boolean algebra, it has an operation + given byx + y = x'y V Xy'

making it into a Boolean ring. This + is not the + inherited from RIR since the

complementation operation ' on 1 IR is not the restriction of the complementation " on

( RIR. Now suppose that Lisa Stone algebra, and it is known that its dense set D is a

Boolean algebra isomorphic to its skeleton L*. There is no obvious way to effect this

isomorphism. However, since D is a filter, a V x is in D for any a E L and any x e D. The

mapping a -4 a V x is a homomorphism from L into D, and in particular from L* into D.

Just observe that (a V x)(b V x) = ab V x so that the mapping preserves V, and similarly it

preserves A. If D is Boolean, or more generally, if D is a lattice and thus has a 0, say 0,

then that is a natural element to pick in hopes of yielding an isomorphism between L' and

D. In R IR, the element 2 is (10) = (010) as noted above, and indeed the mapping

(al) -, (al1) V (I10) = (a l a) = (I I a) effects the isomorphism already noted between R11

. and 1R.
We sum up.

Theorem 4. In R I R, the skeleton R I 1 and the dense set 1 IR are Boolean algebras,

and the mapping (a 11) -4 (a 1l) V (110) is an isomorphism between them.

1 It turns out that the conditions expressed in Theorem 4, namely that the skeleton

and the dense set are Boolean algebras, and the mapping a - a V 0 is an isomorphism

L between these two Boolean algebras, characterize RiR among Stone algebras. This is

made precise in the following theorem.

Theorem 5. Let L be a Stone algebra, L" its skeleton, and D its dense set. Suppose that D

is a Boolean algebra, and that the mapping a -4 a V 0 is an isomorphism from L" to D,

where Q is the 0 of D. Then, the mapping •: L - DID : a-((a V J(av a)) is an

isomorphism.
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v Proof. First, notethat )isindeedamappingfromLintoDID. a V isinD since

D is a dual ideal andQ is in D. (aVa) = a" a* = 0, so a V a* is also in D. We now

break the proof up into several steps.

(1) q) is one-to-one.

Suppose that (a V Q)(a V a*) = (b V l(b V b*). Then

S(a Va) A (a Va') = (b V ) A (b V b*) = a V (0 A(a V a')) = a V= b V.

We also haveaV = bVb*,so thataV a=aVa'VQ= bVVa'. Multiplying

through by a, we get a A (a V a*) = a A (b V a*) = a = ab, and by symmetry, b = ab, so a =

b. Thus q) is one-to-one.
(2) qp preserves V.

tq (a) V qp(b) = (a V ) l(a V a*) V (b V Q1(b V b*)

(a V b V Q) I [((a V 2) A (a V a')) V ((b V Q) A (b V b')) V ((a V a') A (b V b'))]

11 (a V b V )I(a V 0V b V V(a A b) V (a' A b) V (a Ab) V (a Ab*))=

(aVbV12)1(aVbV(a* Ab))=

S(a v b v (a v b V (aV b)' ) = 9(a V b).

Some preliminaries are needed before showing that q preserves A. Since A in

DID involves the complement in the Boolean algebra D, we need to figure out what it
is. We have the isomorphism a -4 a V f2 from L* to D, and the complement operator on L'

is * itself. For a E L, let xa be the (unique) element in L such that xa V a V 2. Thus

the complement in D, which we will denote by ', is given by (a V Q)' = x V Q. This is£9 a
simply because the mapping a -4a V 12 is an isomorphism between L and D. If a itself is
in D, then a' = Xa° V O.

For a c L, it turns out that a pertinent question for us is the relation between a' and
Xa' Note that for a E L, a = a*A (a V a*). This is because a" 2ta and a* A a =O. Thus11a
a V 0= (a** V 12) A (a V a*) since Q A (a V a*) = ., so that

l a V0 = Xa VQ = (a** VQ) A (a V a')=

(a** VOQ) A (a V2 V a* V) =

(a" V12) A (Xa V V a' V =

(a" A X) V12.

Now from xa V = (a*" A xa) V 2, we get a*" A xa = xa, so that a* _xa. In particular,

a =a* < Xa*. We sum up these facts.
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I

(3) For a e L, let x be the element in L such that xa V = a V 0. Then the complement
operator ' in D is given by (a V x)" = xa V , and a' xa*.

(4) q) preserves A.

q4(a) A q)(b) = ((a V D1(a V a')) A ((b V 1)1 (b V b')) =

((a V 0) A (b V!Q))[((a V LD" A (a Vad')) V ((b V!OY" A (b V b)) V ((a V a) A (b V b'))]

((a V (A(b V 0))[[((xa V!Q) A (a V a*)) V ((X V 0 A (b V b')) V ((a V a*) A (b V b'))].

Since

I(xa V12) A (a V a) = (Xa V Q) A (a V0V a'V D =

((x,* V12) A (a V 0)) V (Oc V0) A a- V ))=

~Ovx a',

and since a < xa , we have 0- V xaa* = a* V Q. Thus

q)(a) A p(b)=

((aV0)A(bv ) [(a*VQVb*VOV(aAb)V(a-Ab)V(aAb')V(a-Ab)I=

((a V -QA(b V 0) 1(a* V b' V (a A b))

((a A b) V 0)1 (a A b)' V (a A b)) =

LI q'(a A b).

ii To complete the proof, we need that 9) is onto. Given an element (alb) in DID,
it is not obvious just what element q) takes onto it. How would we find this element in
the case L were RIR itself? In that case, we are given an element (IIa)I(I1b) =
(I ab)I(lIb) in D(RIR)ID(RIR), recalling the fact that IIR is a Booleax. ring, and

" need the element (at b) = (ab I b), which q, does indeed take to (I I a) I(I b). There is one
key observation to be made. First note that for (alb) in RJR, say, (alb) = (ablb) = (abil)

V (01b). Now consider our map ip as applied to RIR. Then

(alb)=

((alb V 1lO)l(alb v (alb)')) =

((abIl V Olb V JlO)l(abil V Olb V (abil VOlb)')) =
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(QI Iab) I ( Ib)).

Since

b (11) V (OIb) V (10) = (Qlab) =(abI ) V(1o),

and

(abil) V (01b) v (abll V Oib) = (i1b) = (Oib) V (Olb)*,

we will be in business if from (I Iab)I (1!b) we can construct, in a Stone algebra satisfying

our hkotheses, elements corresponding to (abil) 2nd (O1b). So we know the elements

(1I ab) and (I Ib), and so know ab and b. The element corresponding to (abl) is, in the
notation above, XaM, . The element corresponding to 01 b is the element x; A a since in

ii RJR. (Olb) = (bjl) A (1I0)- Now this dictates that given the element (alb) in DID, .
should take XaVb V (x ) onto it. We check:

U ~~~~aAb V (r;' J

|!(Xat b V (xi%,"9- v a W %, " ̂=p=

(a A b)I(a A b V (aI0" V ( Xb Va)

L (a A b)I(a A b) V ((a A b)' A b) =

Fr (aAb)l((aAb) V(a' Vb') Ab)=

(a A b)l((a A b) V (a' A b))=

((a A b)Ib).

This completes the proof. o

a Several comments are in order. First, since L is isomorphic to D, L is isomorphic

to 'ir. The theorem was stated using DID since the isomorphism from L into DID is

more simply and elegantly defined than the one from L into L IL.

Second, in the statement of the theorem, one need onl) assume that D is a bounded

lattice and that a -, a V 0 is a one-to-one mapping from L onto D. That mapping is then
automatically an isomorphism since V and A are pre.served in any case.

In RJR, one has the "complcmentation"' given by (alb)' = (a' Ib). No mention cr

use of it has been made in our theorem. In the Boolean algcbra L * is the
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complementation operator. In a Stone algebra satisfying the hypothesis of Theorem 5, the
-t Boolean algebra D must itself also have a complementation operator, and we identified the

complement of an element a in D as an element of the Boolean algebra D to be the-- *

element xa V Q. In a Stone algebra satisfying the hypothesis of Theorem 5, what is the
operator corresponding to ' in RIR? The element a in L corresponds to (a V .)I(a V a*)

L inDID, and

S((a2V (a V a*))' = (a V L)'I(a V a*) = (xa* V )1(a V a*).

The preimage of this element under our isomorphism is the element

X * * V ((x ,)'A ,
(x a V O)A(aVa ) aVa

which by a routine calculation is a* V (xa A a*" A 1). In other words, for a in L,

a =a* (XaA a** A Xa* A (a* V )=a* V (xa A

4Definition 2. An abstract conditional space is a Stone algebra L such that

(1) its dense set D is a bounded lattice, and
(2) the mapping from its skeleton L° to D given by a -i a V , where 0 is the 0 of D,

is a bijection.

Of course, D is also a Boolean algebra. An alternate way to phrase this definition is

to require that D is a Boolean algebra and that the mapping is an isomorphism. That is
Lthe phraseology in Theorem 5. The conditions in Definition 2 are not really weaker

: although they appear to be. In any case, an abstract conditional space is just R IR for
some Boolean ring R.

There are other versions of Theorem 5 available to us. In R IR, the operator ' plays

a significant role, as does the special element (I10). One can arrive at a representation
theorem by postulating these two entities on a Stone algebra and requiring certain
properties of them. The following is an example along this line.

Theorem 6. Let L be a Stone algebra, L its skeleton and D its dense set. Suppose that
there is an element e26 L such that D = L V C., and that there is a unary operator ' on L

that coincides with on L%, and satisfies (x V V) = x " A T2 for all x 6 L*, and 2'=0.
, . Then L is isomorphic to L IL*.

Proof. If x e L, then (x V 1 = (x' A ')*= x' V * x V 0 = x, so the map
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L*-iD :x-4x V Q is a bijetion. Since 0 V = 12 is in its image, Q e D. The map
L -. D : x - x V d for any d e D preserves V and A, so L* and D are isomorphic Boolean
algebras, Q is the zero of the Boolean algebra D, and Theorem 5. applies.

A.3 Semi-simple MV-algebras

This section consists of proving that the algebraic system R IR can be enriched in a
simple way to obtain a (Chang) MV-algebra, so that a formal relationship with fuzzy
logics is established. This latter fact follows from Belluce (1986).

First, as stated earlier, in view of three-valued logic connection, R IR, equipped with
any given system of basic operators on it, is an algebraic structure generalizing boolean
ring structure. This generalization can be viewed in various different ways, depending
upon the given system of operators. In Section 4.1 we have seen that when R IR is
equipped with our operators (A, V, (.)'), then RIR is a special type of a Stone algebra

Fwhere the associated pseudo-complementation * is

(alb)* =a' A b (=a'.b).

In a (independent) pioneering work, Schay (1968) took the equivalent viewpoint by U )
modeling conditional events as generalized three-valued indicator functions. By doing so,
he considered R JR as an algebraic structure with a system of fiv, operators

(r,u, A, V, (.)') (where his A, V, (.)' are different from ours).
Abstracting this algebraic structure, he spent almost half of his work on establishing

a Stone's Representation Theorem for his new structure (Schay, 1968, p. 338-342). While

the mathematics involved is interesting, his axioms for the abstract structure are quite
complicated.

In another direction, motivated by the desire of establishing a three-way relationship
among formal systems, MV-algebras and fuzzy sets in the context of multi-valued logics
(as an analog to the case of classical two-valued logic, where there is such a relationship
among formal systems, Boolean rings and set theory), Belluce (1986) considered aL generalized structure known as Chang W-algebra. This algebraic structure is known in
multi-valued logics (Chang, 1958, 1959). Roughly speaking, such a structure is obtained
when the idempotency and the distributive law in a boolean ring R(+, -) are both

S".dropped.

Specifically, following Belluce, an MV-algebra is a non-empty set A with two

binary operators +, , and one unary operator with 0, 1 satisfying the following
.- conditions.
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(i) <A, +, 0> and <A, ., 1> are commutative semi-groups with identity.

(ii) For all x, y e A,

x + 1=1, x. 1=O, =, O= I .
(iii) For all x, y E A,

(x T y)=x'y, x ~y=x+y, x=x.

S.((that is, - is involutive, and of "De-Morgan" type with respect to + and .).

(iv) + and are such that, if one defines two "boolean-like" operators

xVy=x+xY, 'xAy= (x+5')y,
then <A, V, 0>, <A, A, 1> are also commutative semi-group with identity.

(v) For all x, y, z e A,

x.(yVz)=x.yVx.z, (x+y)A(x+z)=x+(yAz).

Notice that <A, A, V, 1, 0> is a bounded commutative lattice where the associated order
relation < is x <y ifandonlyif xAy=x.

j Definition. An MV-algebra A is said to be archimedean when for each x, y e A, if

(x+ ... +x)=nx5y for all n.0 0, then x.y = x.

A result in Belluce (1986) stated that archimedean MV-algebras and semi-simple

MV-algebras are the same.

With analogous algebraic concepts for MV-algebras, a MV-algebra A is said to be

L" semi-simple if its radical is zero. (See Belluce, 1986, for details.) The point is this:

semi-simple (or equivalently, archimedean) MV-algebras are precisely "bold" algebras of

" ffuzzy sets (Belluce, 1986, Theorem 4), where by a "bold" algebras of fuzzy sets, one

means a subalgebra of the MV-algebra (under induced operations) of all fuzzy subsets of

some space 9, that is, the collection of all functions f: Q -1 [0, 1]. Specifically, [0, 1]

becomes an MV-algebra with:

[H (f + g)(p) = Min(I,f(o) + g(o))

(f.g)(o) = Max(o,f(o,) + g(o) - 1)

, t10)) l o)

(f V g)(wp) = Max(f(o)), g(o))

(f A g)(co) = Min(f(o), go)).

We proceed now to show that R jR can be viewed as an archimedean MV-algebra,
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so that algebraically speaking, conditional logic in a sense is a form of fuzzy logic. The

search for operations on R IR making R !R an MV-algebra is dictated by the operations
+, - of fuzzy sets or of corresponding operations on [0, 1], and this using the Theorem 1

1. of Section 3.4.
In the three-valued logic setting, viewing u as "lying" between 0 and 1, say

Su = 1/2, we can treat u as a real number in [0, 1]. In this vein, consider * and o

defined on [0, 1] by

x ey = Min(1, x + y),

x 0 y = Max(O, x + y -1).

The restrictions of • and o to (0, u, 1}2 yield values in (0, u, 1), and hence

2(3 correspond to truth functions of operations on RIR. So let l: (0, 1/2,1 2 - 0, 212, 1
be defined by

[V(i, J) = Max(O, i + j-1) .
We have

0 /) (, 1), (0, 1/2), (1/2, 0), (112, 112), (0,/), (1, o)1.

Recall that, for a, b, c, d E R with a < b, c < d, the pair (i, j) corresponds to

wi(a b)w c d), where

fa'#b ifi=0
S.wi(a b) =  b" if i = 112

1,ab(=a) if i =

Land
i;" fyf: (RIR)2 -RIR

is determined by

f,_(alb), (cld)) wi(a I b)w, Id) I l w(a1b)w(cd)]

[(ij)v - (1)" , (ij)rp (1)' (0)

Thus, here

:V 1  w(ab)wcj )  ac• ~~(ij)E I
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Sand

-1 w-(aIbwcd
(is)EV" (l)Vy" (0)

=ac V a'bc'd v a'bd' V b'c'd V b'd' V a'bc V ac'd

=ac V b'd' V a'b(c'd V d' V c) V c'd(b' V a)

ic v b'd' V a'b Vc'd(a'b)',

=ac V b'd' V a'b V c'd,

noting that since c 5 d, c'd V d' V c = 1, and that a'b V (c'd)(a'b)' = a'b V c'd).

U] Hence

fV(alb), (cld)) = (aclac V a'b v c'd v b'd')

I = (alb)(cld)(b V dal).

Similarly, for V/u(i, J) = Min(l, i + J), we have

(1) = (1/2, 112), (112, 1), (1, 112), (1, 1), (0, 1), (1, 0)),

v1 (0) = ((, 0)),

V 4  wi(atb)w,.c = b'd Vb'cV ad' V acV a'bcV ac'd(ij)E V/7 (1)"
3.

=b'd' V a(d' V c'd V c) V c(b' V a'b)

= b'd' V a V c(a')

= a V c V b'd',

and

L "  w,(a b)w(c d)= a V c V b'd' V a'bc'd
(jjG VF (1)Vwp (0)

= a V c V b'd' V bd(a V c)'

= a V c V b'd" V bd

= (alb) V. (cld) V (b'd'I).

This suggests the following new operations on R IR:
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(alb) a (cld) = (alb) V (cld) V (b'd' Il),

(alb) o (cld) = (ab)(cId)(b V dil).

1. Theorem 1. (R R, ., o, ', (011), ( 11)) is a semi-simpk MV-algebra.

L Proof. Wes verify the axioms of an MV-algebra. - <RIR, e, (01)> is a

commutative semi-group with identity (011). Indeed, the commutativity follows from the

[symmetry in the definition of 9 above; when c = 0 and d = 1,

(alb) V (01) V (Oil) = (alb).

Similarly, <RI R, o, (ll)> is a commutative semi-group with identity (1l1). Next, the

I . operation - is taken to be ', and we have

. (alb)e (aIb)' = (alb) 9 (a' Ib) = (alb) V (a' ib) V (b' il) = (I Ib) V (b'i 1) =(11);

(alb) o (a'lb) = (ajb)(a'ib)(bjI) = (Oib)(bll) = (011),

UJ; (0I)" =(Ill).

7: Next, always assuming that a : b, c < d,

((alb) 9(cld))" = (a Vc V b'd'Ia Vc V bd vb'd')

= (a'c'b V a'c'dla V c V bd V b'd')

S= ((a'c'b V a'c'd)(a V c V bd V b'd')a V c V bd V b'd')

S= (a'c'bdla V c V bd V b'd')

= (a'Ib) o (c'd) = (aIb)' o (cId)';

V ((ab) o (cld))' = (acla'b V c'd V bd V b'd')

W= (a V c' Ia'b V c'd V c'd V bd V b'd')

= ((a' V c')(a'b V c'd V bd V b'd')Ia'b V c'd V bd V b'd')

= (a'b V c'd V b'd' Ia'b V c'd V bd V b'd')

= (a'lb)D(c'id) = (alb)' e(cld)' ,

noting that a5 <b and c5 <d imply that a'b'= b' and c'd'= d'.



Semi-simple MV-algebras 135

It is easy that (ajb)" = (a b), and is is readily checked that

(alb) o (alb)' o (cld) = (alb) V (cld)

1, and

((alb) 9 (c' Id)) o (cld) = (alb) A (cld).

Thus, V and A on RIR are precisely the derived operations. Also, <RIR, V, (01l)> and

<RIR, A, (111)> are ,.ommutative semi-groups with identity. Finally, it can be checked

that

(alb) o [(cld) V (elf)] =[f(alb) o (cld)l V [(alb) o (ejfj]

1! (alb) a ((cld) A (eLf)) = [(alb)a (cld)] A [(alb) e (ejf)].

For n .2,
(alb) a .. (alb) = (b" V all)

~n imes

Thus 
if

(cld) (b' V al),

then for all n > 0,

i. (alb) a q (alb) < (cld),

v n times

and for a b,

(alb) o (b' Vall)= (alb).

Hence

(alb) o (c'J) = (alb),

.. that is, R IR is archimedean. Indeed,

(alb) o (cid) = (alb)(cld)(b V d[1)

=(alb)(b Vdl)= (alb),

since (aIb) < (b' V al) _ (cId), using the criterion that since (aib) :5 (c d) if and only

if ab < cd and c'd 5 a'b. 0
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Remarks. There are some similarities with fuzzy logic.

(i) The two additional operations a and o on RIR are defined in terms of the
original logical operations V, A. The algebraic structure

(R JR, 9, o , (-)', (0 11), (111),:5

is somewhat similar to a quantum logic, since with respect to 6 and o , the operator
is an ortho-complementation, so that the law of excluded middle holds, and o is not[ distributive over e. However, o is not idempotent.

(ii) In fuzzy logic (for example, Zadeh, 1983), the basic connectives are defined in

terms of operations on the unit interval [0, 1] : V = max, A = min, =1 As in
Belluce (1986), [0, 1] becomes an MV-algebra when one introduces new operations

e, o, and " given by

x ey=1 A (x + y),
C:

.J x oy =0 V (x + y - 1).

for x, y e [0, 1]. In turn, A and 't are expressed in terms of a and o by

x A y= (xae)o y,1.
and

X V y = xe 0 y.
L.

(iii) For u = 112, Lukasiewicz's three-valued logic is a subalgebra of the
MV-algebra [0, 1], that is, is a "bold" algebra of fuzzy sets. An alternative proof of
Theorem 1 is obtained by using Theorem 2 of Section 3.4, and making the easy
verification of the above fact.

Let A = {0, 1/2, 1). Define, for x, y E A,

x a y = ain(l, x + y),

x o y = max(O, x+y- 1),

Then
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x V y = max(x, y),

x A y = min(x, y),

and the order relation < is the ordinary order relation on real numbers. A is a

MV-algebra. Moreover, it is archimedean. Indeed, for x e 0,1/2, 1), if x =0, then for

n > 0, we have
I 0.---o 0

= 00, 112, 1,
n t imes

• .with

0 0 0 1o1/2 =0 o 1 0.

If x= 112, then
1/2 1 . Il2=1,

n times

- and 112 o 1 =1/2.

If x =1, then

1. .. e 1=1

n times

* withlol=1 , 0

1-
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CHAPTER 5

Ii . CONDITIONAL EVENTS AND PROBABILITY

The connection between logic and probability is apparent in automated reasoning

processes under uncertainty. A systematic study of the extension of probability logic to

the conditional case will be presented in Chapter 6. In this Chapter 5, we establish

various basic properties of probability measures extended to the algebra of conditional

events as well as the justification of assigning conditional probabilities to conditional

1] events. We discuss the association of randomness to conditional events (such as random

sets, random conditional events, random conditional variables). Finally, a general concept

Bof qualitative (or measure-free) conditional independence is introduced.

[5.1 Uncertainty measures on conditionals

It is an accepted thesis "hat uncertainty is essentially conditional, that is, the

uncertainty of an event is always conditioned upon some other events. At the numerical

level, that is, when uncertainty is taken in a quantitative way, a natural domain for

uncertainty measures is a conditional space R JR. For example, inr order to rigorize

Lindley's discussions on the inadmissability of uncertainty measures in expert systems, via

the scoring rule approach (Lindley, 1982), it is necessary to evoke conditional events

(Goodman, Nguyen and Rogers, 1990).

By an uncertainty measure jt on RIR, we mean a map I : RIR -4 OR, say, where IR

. denotes the set of real numbers. Now, for (alb) e RIR, we have (alb) = [ab, b" V a], an

interval in R (see Section 2.3). Thus, an uncertainty measure g on R IR can be

S derived from a map v: R -4 IR as follows.

( alb) = F(viab), v~b' V a)),

Li where
F : IR x IR -- IR

is some given function. For example, if v = P, a probability measure on R, and

F(x, y) = X

w +x-y

we have jI(a b) = P(a jb), provided P(b) > 0. (See also Dubois and Prade, 1991.) It is
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r obvious that, in this way, various uncertainty measures on R IR can be considered. In his

book, however, we are concerned only with uncertainty measures derived from probability V'
measures. For other types of uncertainty measures, see Dubois and Prade, (1991).
Specifically, we will proceed to justify conditional probability as a means to assign

uncertainty to conditional events. Note that, in the development of the theory of

I" measure-free conditioning (Chapter 2), the condition of compatibility with probability was

used in an essential way, so that it is possible to assign conditional probabilities to

conditional events in a consistent manner. We emphasize, however, the appearance of

conditional events as cosets of Boolean rings in our present work. The problem has been:

define mathematically objects (a t b) representing implicative propositions of the form "ifC]b, then a " (implicit or explicit) or " a on condition b " or "a given b" in such a way
that it is possible to quantify the strengths of these propositions by conditional

1 probabilities. Of course, if (a I b) is modeled as material implication b -1 a = b V a

then one can quantify it by unconditional probability P(b -4 a). The general problem in

reasoning under uncertainty in artificial intelligence is this. Given a knowledge base

consisting of uncertain conditional information, how does one combine these conditional

propositions and do inference? At the syntax level, one first needs to define or model "if

b, then a" by b * a , say. Next, define appropriate connectives among such objects so that
one can combine b * a with d * c through the use of these connectives. For example,

(b * a) A (d * c) . At the numerical quantification level, one chooses an uncertainty

measure y. which can operate on the (b * a) and proceeds to compute, for example,

jA((b * a) A (d * c)). When u(b * a) is chosen to be P(alb) , then b * a has to be a
coset. The logical operations among cosets developed in Chapter 3 provide connectives

i for conditional propositions. One combines severeal conditional propositions at the syntax

level, obtaining another coset, and then evaluates its conditional probability which is

considered as the measure of uncertainty of the combined evidence. Furthermore, it will

be shown in Chapter 6 that an entailment relation among conditional propositions can be

established so that deduction or inference can be carried out at the numerical level. If b

a is modeled differently, for example, as in a "first-order conditional logic" of Delgrande

(1987), then the quantification measure g should be different than a conditional
I: probability operator. As an example, one can model b * a as b -4 a (materialL,

implication) and use some appropriate non-additive "measure" pi on the ring R so that

"-, a) = p(a I b) , where u(- I b) is defined to be a "conditional measure". A typical
situation is when 1i is chosen to be a Dempster-Shafer belief function (see Somb6, 1990,

p. 405-406, or Pearl, 1990, p. 371-373). For example, let R be the power set of a finite 4

* " set 92. Let m :R-4 [0, 1] be such that 0 -
m) = 0 m, E (a)=1" ~a ..
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I.

u:R- [0, 11 with t(b) = in(a).
a...<b

For fixed b define
Inb(a) = X re(x)

where the summation is over all x in R such that bx = a. Then the conditional belief

function g(- I b) is defined by

p(alb)=Z mb(X).
X: a

It is easy to verify that

(x :x5b" Va) = (x:xb=y5a).

Thus, (a Ib) =,L(b -Ia).

It is relevant here to describe the works of Rdnyi (1970) and Cox (1961). First, let

(0, f) be a measureable space. If P is a probability vaeasure on ., then theI.' A
associated conditional probability "operator" P is defined as follows. Let

Wp = (a: a , , P(a) > 0).
I

Then define
A

by 
F: fX Wp-4 [0, 1]

AL P(a, b) = P(alb) = P(ab)IP(b) .
A

Here, P is viewed as a "global" map, that is, with domain x w , rather than "locally,"

U that is, rather than a collection of maps P(- Ib), one for each b E Wp. This is in line

with Rdnyi's concept of conditional probability spaces (RWnyi, 1970). See later for details.A
The map P has the following basic properties:

A
(i) For each be w , P(-, b): a- [0, 11 is a non-negative and -additive set

function (that is, a measure).
A(ii) For every b E Wp , P(b, b) 1.

A

(iii) For b, c ivp with b: <c, one has P(b, c) > 0, and if a e 4,then
A A A
P(a, b) = P(ab, c)IP(b, c).

The subset ip of 4 has the following basic properties:
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I.

(iv) If b Ww . then b, 1Vb1~
!+ 0

(v) There exists a sequence bn  Wp n .-1,suchthat V b = Q.

L (vi) 0 ewP.

.i Following RWnyi, a subset Tc ,', satisfying (iv), (v) and.(vi), is called a bunch.

The abstraction of the above is cleaw an abstract conditional probability operator

(or conditional piobability ,operator or CPO for hort) on (DL, , ), where .9c ' is
A

abunch, is a map P defined on ,Cx ,, satisfying (i),C i) and (iii).

Note that, from (iii) and (ii), with b = c, we get

A A
P(a, b) = P(ab, b).

A
By (i) , P(-, b) is non-decreasing, so that

A A A
P(a, b) = P(ab, b) _P(b, b) = 1.

lI Also, P(0, b) = 0, since P(-, b) is a measure by C). Thus, the range of P is [0, 1].
The main r lt of Rdnyi (Rinyi, 1970, p. 40) is this. If P is a CP on

P, ,4 2), then there exists a a-finite measure gL on ,C, unique up to a positive

constant factor, such that:

D Ca:a A,0<I(a)<+-l,

and for all ae si and b e ,

P(a, b) = p(ab)!l(b).

A A
For A. to characterize P, we need to extend P so that

[]~2 =[a : a, e,, 0 < IL(a) <-*}

This can be done as follows (Rdnyi, 1970, p. 43). Clearly,

0*= [a'a eC, 0 < p(a) <-

I is a bunch. Note that 2" is the same for all measures IL hi Riyi's theorem above.
1. A
We have Qc ,*. If 4- .9 , we extend P to Xx 5° by

P(a, b) = p(ab)lJ(b),

for be "- 5 and a e ,C. This extended operator P is a CPO on (M, / %").

Therefore, there is no loss of genera2ity to assume that any CPO P on (M, '9) is
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A
characterized by g with 2= (a:a e 4 ,0<p(a)<+c*}. Thus, each CPO P on

(Q, , 2) is derived from some (a-finite) measure p on (0, 4). In particular, if AA

is finite, that is, A(92) < , then Q e .0, so that P(-, 92) is an ordinary probability1J A
measure on (12, 4), where for a e 4, P(a, Q) is interpreted as tht. %4, onditional
probability of the event a.

I As a final note on Renyi's work, recall that R6nyi's concept of conditionalA

probability spaces (92, P . 1) was motivated by the thesis mentioned at the beginning

[of this section that "every probability is in reality a conditional probability." Thus, it is
intuitive to define CPO first, and then derive ordinary probability measures as special

cases. Conditional probability spaces are consistent with Kolmogorov's model of

probability spaces in the sense that they generalize Kolmogorov's probability spaces.
Note, however, that Kolmogorov defined probability measures first and then derived

conditional probability measures.
Next, we outline Cox's work (Cox, 1961) concerning a class of uncertainty measures

B which can be transformed into conditional probability measures. In passing, we will
mention the analogy with Lindley's message on the inevitability of probability (Lindley,

1982).
Let R be a Boolean ring of propositions. Taking the same thesis that numerical

uncertainty is conditional in nature, Cox proceeded to derive a calculus of uncertainty as
follows.

StaLet A be a map on an appropriate domain in R x R. Cox(1961, pp. 18-22) proved
U that if

[1 (1) A(a, b) = f((a', b)) with f differentiable, andLI3 (2) p(ab, c) = j'., c)t(b, ac),

lj then A(-, b) is finitely additive and fAx) = 1- x.

More generally, Cox replaced (2) by

(3) t(ab, c) = F((a, c) , p(b, ac)) with F(x, y) differentiable.

Then he showed that there exist functions g of one variable such that (1) and (2) are

L-[, satisfied when A is replaced by go. As a consequence, goA(., b) is finitely additive.
In other vords, the uncertainty measures p satisfying (1) and (3) can be transformed into
(conditional) probabilities. Cox argued that there is no difference between p and goA

since "if p(alb) measures probability, so also does an arbitrary function of A(a Ib)
* (Cox, 1961, p. 16). This is precisely what we should understand years later when Lindley

declared that "one cannot avoid probability" (Lindley, 1982).

Now, suppose P is a probability measure on (f2, .), and let g(x) = xr for some

r . 1. Then goP = Pr is no longer a probability measure. In fact, Pr is a belief function
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[ in the sense of Dempster-Shafer (Shafer, 1976). See also Section 5.3. Of course, pr can

be computed from P , but as a set function on a,, pr satisfies a weaker set of axioms

[f than that of a probability measure. In an abstract setting, that is, when belief functions are

defined from axioms, not all belief functions are functions of probability measures (see

Goodman, Nguyen and Rogers, 1990). In Lindley's sense, belief functions which cannot

be transformed into probability measures are "inadmissibld." More generally, if

. : a-# e, say, is a set-function representing a quantification of uncertainty, then . is

L"admissible" if there is some function g such that gop is a (finitely) additive

set-function. It is clear that p. need not be a probability measure. Thus, in the view ofULindley, whenever an uncertainty measure A is considered, one should find some

function g such that goj. is a probability, and then inferences should be based upon

gop and not upon p.. As we have seen, a sufficient condition for the existence of such

g is the set of conditions (i) and (iii) in Cox's program. Note that the work of Lindley is

"conditional" in nature. Any p which cannot be transformed into probabilities should be

ruled out! Because of this important view on decision making in uncertain systems, we

present below an outline of Lindley's paper. For more details, see Goodman, Nguyen and
Rogers (1990).

Let R be a Boolean ring, viewed as a field of subsets of some set 2. Roughly )
i! speaking, an uncertainty measure p : (RIR) -4 R is said to be "admissible" if there is a

function g such that goA. is finitely additive. To make this statement precise, we need

to explain the concept of admissibility and the sense in which gop is finitely additive.

The most general framework in which admissibility can be addressed is game theory.

Consider the following special class of games called uncertainty games. These are

.iples (A,, A2 , L) of the following form. A1 is regarded as a space

A, (((aI bl), ..., (a Ibn)), co) : ai, bi e R, i = 1, ..., n; oe E Q , n >> 1}

of all possible "moves" or "pure strategies" of player I. Fix, once and for all, two real[1
numbers o <a , and let

A2 = (RIR) -4 [o, a1]).

Each element of A2 is a map assigning a number (describing the uncertainty) to each

-,. conditional event. A2 is regarded as the space of "moves" of player II. Consider now the

choice of loss function L. As in Lindley's paper, a function

fi: [s, al X ae, U, 1 -4oI

i is called score function if
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(i) for each j e 0, 1), ft., f): [ao , a] -41 is continuously differentiable, with a
unique global minimum in [a .0, c] at aj, and

~(ii) flx, u) =0 for all x e [a.o , al]

Ii We extendf to [a1, ,]n xfOu,1)nn>Ias usual. For
f] Ax n = (x, , xn) E [ao, alln,

t = (t,, ) e (0, U1 n,

III A A ,f(Smia X , xt n) (f(Xo tRI)P ...Pof=)1) ,..,y)enn1 .
j J Similarly,g. is extended to (R IR)n componentwise. For

(a IL)n = ((a, Ibi), ..., (anlbn)) e (RIR)n,

I a_[)n = (u~(al Ibl), ..., A(an Ib)) 6 [a~o , al]n .

Let qp(a I b) denote the generalized indicator function of (a I b). A natural way to
combine individual "scores"

"(t(i(a Ibi) , (ailbi)( 0)) , i = 1,2, ...,n,

to obtain the total score is using addition on . That is, take

13 n
Lf+((alb)n, w, j) = ftp(aIbi), q)(aIbi))(o).

The loss function Lf,+ depends on two functions, the score function f and the additive
Ii aggregation function +.

In general, by an aggregation function, we mean a function

JjV: ( l ' y n) E Rn" n 1) -4R

such that

Lis a) V/ is continuous differentiable in all of its arguments,
b) V is increasing in each of its arguments, and
c) (O) =0 , V n _ 1, where 0 denotes the zero vector in IRn.

The additive aggregation function is generated by ordinary addition on IR. Taking v = +
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is equivalent to the sequence of functions g n 1, where
n

"" g.: -"U ' g(,,x "',) = xl'
9 U, i=

I Similarly, an aggregation function yr can be identified with- the sequence iyn, n .1,

pwhere Yt is the restriction of V to Dn. While the additive aggregation function is

symmetric, there is no a priori reason to impose such a condition on arbitrary aggregation

functions.

[} The game (A1 , A2 , Lf,) will be denoted by Gf,+. It is simpler to formulate the

concept of admissibility of uncertainty measures using an equivalent reduced form of

Gf, In the expression of L,, the value of L,+((ab.)n , 0), g), for each fixed ;4 at

((aI b)n , o) E A1 , depends on the "configuration"
] q aLb)n(O)) = (p(a, Ibi)(oo) , ..., (pan Ibn)(O))) E 0 ,In

[jThus, Lf,+((a Ib.)n , ",) is constant on each element of the canonical partition i a Lb)n

of C2 generated by (a b)n. Specifically,

7I~ Ia ..)n -" [B j 1, 2, .,23n},U
In 3 k

where each B. is of the form A Dk , for
k=1

D flb , "~bj b , i 1, n},

Uek=l or O,al=a,aO=a'.

(See R6nyi, 1970, p. 12-15.) Thus, we can replace A1 by
1n[!Al ( I {_lbn, B) : (a IL_)n 6 (RJR) BE 7 (al , I > On n

L is modified to

L -A xA R,f,+ 1 2-4
I n

Le+ab) for ) = .T+he e val r fr of G ibi)(B))

|•where (allI bi)(B) = ojaI] bi)(o) for (0 E B. The equivalent reduced form of Gf, is
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G , , A2, L

The development above, as well as various concepts of admissibility with respect to G

which will be formulated below, are extended in a straightforward manner to an

arbitrary aggregation function y, replacing + by i. ,

First, g e A2 is (ordinary) admissible with respect to G if there is no v e A2

such that

L,((aLb)_, B, v):5 < +((al b), B, A)
fji)

.1 for all ((aI b)n, B) e A,, with strict inequality holding for at least one ((a b)n , B).

For each fixed (a_ n ,asubgameo f,+ is G 1+(allb)n where A2 is replaced

ii by
A, aILb) n = i .((aI bi) : i. = 1, ..,n) -4 [R.

With respect to Gy,* l_,, t (l~ is admissible if there is no v r:A.(al. n

such that

Lf ,+ ((ali~n , , f ,+ ((aib n B, On

ifor all B E 7r(a b.)n , with strict inequality holding for at least one B. ju e A 2 is said to

; be uniformly admnissible with respect to Gf,+ if it is admissible with respect to

Gf,+(a.I b) for all (aI.)n E (RIR)n. It is clear that uniform admissibility implies

ordinary admissibility. It turns out that under mild conditions, uniform admissibility of IL

with respect to G f,+ is equivalent to the existence of a function g such that the
restriction of goAt to R is a finitely additive probability measure. (R is considered as a

subset of R IR, by identifying (a 192) with a.)

As in Lindley (1982), let f'(x, j), j = 0, 1, denote the derivative of f(x, J) with
respect to x ; the above function g is

Pfx (XOX E [a0, al].
fXf,O) -f'(x,1)

The following result was proved in Goodman, Nguyen and Rogers (1990): With respect to

the game Gf,+ with score function f such that Pf is increasing, I is uniformly

admissible if and only if the restriction of Pop to R is a finitely additive probability
measure. But if f is not a proper score function, that is if P1(x) x for some x, then it



148 Conditional events and probability

I .

can be shown that no non-atomic probability A on R can be G,-uniformly

admissible, so that we have to consider the concept of admissibility in a wide sense.

Specifically, [ is said to be generally admissible if there is a game Gf,+ such that A is

uniformly admissible with respect to that game. In this sense, any probability measure is
"admissible" by taking the score function f to be a proper score function, that is by
taking f such that Pfx) = x, for all x.

B Consider Dempster-Shafer belief functions (Shafer, 1976). For simplicity, consider
the case where Q2 is a finite set (see Section 5.3 for the general case). A belief function
Bel on the power set of 92, denoted as .9(92), can be defined as follows.

Let m : .f(K2) -4 [0, 1] be such that

Ii m(O)=O, m(a) = 1

~Bel(b) = re(a).

Note that if A.: 9(2) -4 [0, 1] is such that ju(Q) = 1 and for all a 0,

;(_l)Ia'bl(b) ;>,

then A is a belief function. (lb I denotes the cardinality of the set.b)
If we think of "sets" as "points", then m plays the role of a probability mass

function, and Bel is the "cumulative distribution function" of some random set. See
Section 5.3. Since 2 is finite, we have

Bel(a) = P(X 9 .(a)), a < 2,
L[ where X is a random set, defined on some probability space (E, 4 P), and taking values

in 9(f2) with "density" m, that is

P(X = a) = m(a).

L1. Note that Bel(a) + Bel(a') < 1.

We extend Bel from 5(92) to the conditional space ,9(K2)j ( 2) as follows.

" For a, bE 9(92), such that P(X _< b) > 0, define Bel(alb) = P(X < aix b). By the
nature of belief functions, we take [cro, czj = [0, 1].

It is easy to construct Bel such that there exist a, b e ,9(92) with Bel(a) = Bel(b)
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* but Bel(a') # Bel(b'). It can be shown that such a belief function is inadmissible. This
is due essentially to the fact that, for such belief functions, Bel(a' Ib) is not a function of
Bel(a I b).

Now observe that

Bel(aclb) = P(XS <acIX < b)

= p(X5a,X5cIX :b)

p = P(X~aIX5b)P(X c IX a,X5b)

= Bel(a I b)Bel(c Iab).

Thus, there is a differentiable function h : [0, 1] -4 [0, 1] such that for all a, b Q with

Bel(b) > 0, we have

Bel(a" Ib) = h(Bel(alb)) .

Then by Cox's result, Bel is admissible. For example, if Bel = Pr where r 1, and P

is a probability measure, then Bel is admissible.
I: As another example of non-additive uncertainty measures which are admissible, we

turn to fuzzy logics. For background, see Chapter 7. A t-conorm T is said to be

archimedean if T is continuous and Vx E (0, 1), x < T(x, x). (See, for example,
Schweizer and Sklar, 1983). T(x, y) = min(x + y , 1) is archimedean, while

T(x, y) = max(x , y) is not. T is an archimedean t-conorm if and only if there exists an
increasing, continuous function g (called the additive generator or generator of 7) which

. maps [0, 1] -1 [0, +,] with g(O) = 0 and such that for x, y e [0, 1],

T(x, y) = g (gx) + g(y)).

The pseudo-inverse g* of g is a function g" : [0, +c] -, [0, 1] defined by

g-1 (x) if x Efo, g1)
r :. g*(x)= if x >g(1)

(See Ling, 1965).

For example, for p _ 1, Tp(x, y) = [min(xp + 9, 1)]I P has generator gp(x) =x P

and

/ ifx> E0,1]
gp(X = I if X >I
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(noting that gp(1) 1 here).

[ Since each t-conorm T is associative and commutative, we can exend T to any
n-tuples, n >_ 1, as follows. T(x1) = x1, by convention, and for n _ 2,

The representation of an archimedean t-coriorm T becomes

n

T~xl'x2 -"' X ) g*( (xi))n

For a be a t-conorm T, a T-possibiliy measure is a map g from P(Q) to [0, 1]
1i such that for a, b Q 2 with ab = 0 , )i(a V b) = T(u(a) , A(b)). Zadeh's possibility

measure corresponds to T(x, y) = max(x , y). The folowing result is from Goodman,

Nguyen and Rogers (1990).
Let 91 be finite and t: . (92) -1 [0, 1]. Then is admissible if and only if A is

bT-possibility measure with T being an archimedean t-conorm with generator g such that

g() = 1 and ) g(((a)) _<1.

92
A T-possibility measure with T(x, y) = max(x , y) is not admissible, but it can be

approximated by admissible ones. Indeed, if p. is such that .t(o) 1, then for p _ 1,

V vp(a) = T (y(o), o E a) is admissible since

Sgp(vp,(()) = (.P(cOj) 1.

On the other hand, for each fixed n,

T p(X,' x2' .. ,X)max(xl, x2, .,xn)

as p -0o, uniformly in (x,, ..., xn)

Thus, if A : -9(92) -4 [0, 1] is defined by

A(a) = max J(co),
ieas

for a5 _< 2, then A is a T-possibility measure with T(x, y) =max(x , y), and
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12

iO t(a) = I im v(a) ,

P-++ .,

uniformly in a.

Finally, note that while the concept of admissibility of uncertainty measures with
respect to a game is general, its equivalent form, namely that admissible uncertainty

SI measures have to be transforms of finitely additive probability measures, is valid only in
games with additive aggregation functions. Specifically, there are non-additive
aggregation functions yf such that with respect to games G,, admissible uncertainty

measures need not be transformable to finitely additive probability measures. (For this

*1 analysis, see again Goodman, Nguyen and Rogers, 1990).
We turn now to the justification of assigning conditional probabilities to conditional

I '~events. From the standard viewpoint of conditional probabilities, not via conditional
events, the assignment of P(a Ib) = P(ab)IP(b) to the conditional event (a I b) can be

justified through a functional equation approach of Aczel (1966, p. 319-324). See also the

discussions concerning Cox and R6nyi's works presented earlier in this Section.
We present another justification based upon conditional event considerations

(Goodman, 1991). Let P be a probability measure on a Boolean ring R. If A c R, then

P(A) is the image of A under P, that is

b P(A) = (P(a) : a e A).

In particular, for (alb) E RIR, we have (aIb) c R, so that, formally,

P(aIb) = (P(x):x E (alb)).

But (aIb) = [ab, b' V a] , a closed interval in R (with the partial order relation _ on

IR). Thus,

i P(aIb) = {P(x) :ab x b" V a) c [P(ab), P(b' V a)],

a closed interval in the unit interval [0, 1]. If P(ab) = P(b' V a), then P(b) = I and

Ui ' P(alb) = (P(ab)) = P(ab) = P(ab)IP(b).

If P(b' V a) - P(ab) = I , then P(b) = 0, and conditional probability P(alb) is not
L defined. Thus, consider the case [s, r] c [0, 1] with s <r and r - s 1. Let

*h, : [0, 1] -- [0, 1] be given by

hian) = )L + (I- 2)s
i and for n 2:2,
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hn(X) = h1(h-1(O))*

Then, for X e [0, 1], 1 im h n(X) exists and is equal to
fl-4c0

X's, tsI _ _I +S - t

Ii
The proof goes as follows. Since hl(.) is non-decreasing and X is the (unique) fixed

point of hl(.),. we have that As t IA implies IsAt < h n(), for n > 1 . But if

X s,t< hn(A), then hn+lOA < hn(X). Thus, the sequence (hn(;.), n _ 1) is decreasing and

bounded from below by Is, (and from above by A). Hence Irim hn(A) = h() exists.S ~n-4 CO

I Similarly, if AAX s't, then hn(L) < Xs' t , Vn >_ 1, and hence hn(l) < hn+l(.). Thus,

XA5 hi(X) h2(Q) :-... A 's,t ,

and hence lim hn(X) exists.

fl In any case, for X [0, 1], we have

h(X = I im h(1) =h(lim hni(L)) =h

Therefore, h (X) = A for X e 0,1].

r The above procedure of assigning the value Asm to the sub-interval [s, t] C [0, 1]

can be extended to an arbitrary subset A of [0, 1] by considering [inj(A), sup(A)], that

is, if s = inf(A) and t = sup(A), then one assigns to A the value sl(1 + s - r.

Now, back to the case

A = (P(x), ab 5 x:5b"V a) c[0, 1],

with
inf(A) = P(ab), sup(A) = P(b' V a).

It is natural to assign to the conditional event (a I b) the value

P(ab)

e P(ab) - P(b' V a) a

when P(ab) < P(b' V a), which is the conditional probability P(ab)IP(b).
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5.2 Conditional probability evaluations
Let P be a probability measure on a Boolean ring R. Unlike the traditional

approach to conditional probability measures, namely, viewing a quantity like P(a I b) as

a probability Pb(.) on R, for each fixed b E R, we are going to extend P globally to

the algebra of conditional events R IR, so that, if we denote this extension of P as P,
i. then

:R-- [0, 1].

I Note that for fixed b E R with P(b) > 0, the probability measure Pb(.) on R

I defined by
ii

Pb(a) = P(ab)IP(b) , Va E R,

is "equivalent" to the probability measure Pb(-) on the Bcolean (quotient) ring R IRb'

where b(a I b) = Pb(a). Indeed, first Pb(-) is well-defined on RJRb'; next, with

respect to Boolean operations on R IRb' (that is, coset operations), Pb(-) is a probability

measure. Conversely, let P be a probability measure on R IRb'. If we define

Pb(-) :R -4 [0, 1) by Pb(a) = P(a I b), then obviously Pb(.) is a probability measure. In

P(a b), (a I b) is an argument of the map P(-). Note that, although, the extended value

P(a b) is taken to be P(a I b) = P(ab)IP(b), for P(b) > 0, in the usual sense, care should

V be exercised upon P(-) as an extended map. In particular, with algebraic domain

(RJR,., V, (-)'), is not a probability measure. As we have seen, RIR is not a Boolean

V. ring. Moreover P is not additive. The situation is somewhat different from the

axiomatic setting for quantum probability theory (for example, Gudder, 1988) where the

domain is a a-additive class (generalizing the usual concept of a a-field): there, a form of

1. a-additivity is reasonable to retain. This is possible because not only the physical reality

supports such a mathematical modeling, but because quantum probability measures are not

" derived from classical probability measures the way P is derived from P.

Obviously, the advantage of viewing P as a global map on R IR is the fact that,

when the uncerainty is handled in a more quantitative way, one can combine conditional

evidence with different antecedents. From a pure mathematical viewpoint, one can view

R [R as an algebraic structure generalizing Boolean rings, say, a Stone algebra which does

- contain an underlying Boolean ring, and consider maps on RIR such that their

li restrictions to the underlying Boolean ring are probability measures. However, here we

are simply content with examining properties of P for probabilistic inference purposes.

First of all, extending the concept of disjointness of events, that is, elements of R, to

RJR, we say that (alb) and (cjd) are disjoint, if
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(alb) V(cld)= (alb) +(cld). 9)
In this case, we have

P((alb) V (cid)) = P((aJb) + (cid)) = P((a + clbd)) = P(albd) + P(clbd) .

Now

(alb) V (cld) = (alb) + (cld)

implies

ab V cd V bd = bd,

that is ab V cd5 <bd, so that ab5 <d, cd5 <b, hence, abd = ab, bcd= cd. Thus

P(a Ibd)+(cIb)= P(aIb) + P(cld) > P(alb) + P(cld).
l Pl P(alb) P(bld)

Thus, P is not additive on R IR. However,

Theorem 1. P is monotone increasing on R JR.
!t.

Proof. Suppose (a Ib) (c I d). Then

(cld) = (alb) V (cid)=

(abib) V (cdd) = (ab V cdJab V cd V bd) .

L Since ab V cd V bd < b V cd, we have

P(cl d) = P(ab V cd)IP(ab V cd V ba) P(ab V cd)IP(b V ca).

Now,

ab V cd= ab V (ab)'cd = ab + (ab)'cd ,ab + b'cd

I~j and

b V cd = b + b'cd,

we have

P(ab V cd) 'a P(ab) + P(b'cd), P(b V cd) = P(b) + P(b'cd) .

* . Putting these together yields
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P(cld) P(ab) + P(b'cd)P(b) + P(b'cd)

It is easy to see that P(ab) + t is monotone increasing in t > O, so that

P(b) + t

P(cjd) >_P(ab)P(b) = P(alb). -

Y

F : Remarks.

(i) Since ab -< (alb) < (b -4 a), we have

P(ab) <_ P(alb) P(b -a) =P(b' V a).

£(ii) It is easy to check that

fI(acib V d) 5 (alb)-(cld) _ (acjbd),

and

a V clbd) 5 (alb) V (cld) (a V cb),

- so that

-- P(acib V a) _ P((alb).(cld)) : P(aclb a),
[i and

P(a V cbd) - P((alb) V (cId)) -P(a V cIbd).

" For combining conditional evidence, from a quantitative viewpoint, we present an

extension of Fr&het's bounds to the conditional case. First, we recall the unconditional
case. Let P be a probability measure on R. Then for any a, b E R,

P(ab) < min(P(a), P(b)).

In fact, for a5b,

P(ab) = min(P(a), P(b)),

so that min(P(a), P(b)) is the best possible upper bound for P(ab). Similarly,
I"

P(a V b) < min(, P(a) + P(b)),

*and equality is achieved when ab = 0. Now

P(a' V b') _ min(1, P(a') + P(b') = min(1, 2 - P(a) - P(b)},

so that
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I.

P(ab) = I- P(a vb')

1 -tminl,2 - P(a) - P(b)) = maxtO, P(a) + P(b)- 1),

which is the best possible lower bound for P(ab). By the same token, the best possible

lowerboundfor P(a V b) is

1 - min{P(a'), P(b')) =max(P(a), P(b)).

More generally, for n _2, we have

n

max(O, P(ai) -(n -1)) - P%(A a.) 5 min[P(aQ, i 1,., n),

H ~and =j1

max{P(ai), i = 1, ..., n) < F( V a) <- rainl, P(ai)}i=1 i=J

ifNow, let T(a1, ..., an) be a Boolean function of n variables. Write ip in its

normal disjunctive form

pq(a 1a2  ... , a ) V . V 9ii i2 ' --in)a I  a2  a n

I: i1 =OI in=O,l

with the usual convention a 0 a 'a' Ia. It is easy to see that one can determine two

z-." functions

U ,•9 - [o• Jl] -4[, 1]

such that

,(P(a,), ..., P(an)) < P[q(a1, ..., an) U(P(al), ... ,

where L =]-U ,•with 9'(a1 1 ...• an) = [q(a... af]'.

-- These results were also obtained by Hailpefin (1965, 1984) using the technique of

linear programming. This latter technique provides a feasible procedure for computing the

bounds L and U of P[q], and can be adapted to computational procedures Ain

probability logic (Nilsson, 1986). To find U,, let ii = P(ai)" i = 1, 2, ..., n. Then

from the normal disjunctive formi of q((aI .... a )• we have

*1•
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,~)l an)

I.
1O 1

VPhp a1, ..., an)]= : . i1 .,i)i •,i)

wherei1=0 
'n=O

,1 iI 2  in
3(i...,in) = P(a a2

2 ...an ).-

1 Next, for each j•= 1,..., n,

jl-1 Ij+1 Inaj= V ... V V ... V a, a a.11a
s1 ta ii=0,1 i'= j+l=0, i n=O,1 ""J" . "'

so that

[II (*I 1 I= I

il . .

also, since the a1  " form a partition of I (the greatest element of R), we have
1 

1

(*1 (**) .i=

L ii=0 in=0

Ii Thus the least upper bound of P[q(a,, ... , an)] is obtained by maximizing
Pia1, ..., an)], as a function of tie variables P(i1, ... , in), subject to the constraints (*),

( '*) and g(iI ,..., in) _ 0 (the a.s are constants). Note that since the q(i1, ... , in)'s are
either 0 or I (elements of R), the linear constraints (*) and (**) can be put in a matrix
form with a "design matrix" whose entries are 's and l's.

The linear programming technique above for actually determining lower and upper
bounds LV U of P[p] for any boolean exoression q) can be adapted to a similar
situation in probabil.ty logic (Nilssor., 1986). Since Chapter 6 will deal with conditional
probability logic, it .s relevant here to say a few words about basic aspects of probability

'logic (see also, Rescher, 1969 and Hailperin, 1984). We follow Nilsson (1986).
Although the collection of sentences of interest forms a Boolean ring R, and hence,

or.e can talk aboct probability measures P on it in an abstract setting, in practice, only a
L- small set of sentences is to be coasidered, for example, evidence in an expert system. The

9 problem of probabilistic entaiZ.nenc i; Nhis. Suppose we have a set of sentences si,
i =1..., n with known probabilities P(si) , i = 1, ., n ; compute P(r), for some
sentence r of interest, in terms of the P(si)'s. irst, sentences are taken to be

1 "propositions," tnat is, each sentence is either true or false only. However, the uncertainty
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emerges since we do not know whether a given sentence is true or false, based on

available information. By Stone's representation theorem, one can view each sentence s

as a subset of a "sample space" or universe D on which probability measures are defined.

In this setting, a "possible world" is simply an element of 1.1 Thus, for each s c 92, there

are two sets of possble worlds s and s': in s, s is true; and in s', s is false. One can

also consider the indicator function of s : Is: Q -4 (0, 1) and as in statistical theory,

before performing an experiment, it is meaningful to consider the chance that s will be

"realized." In expert systems, for example, a sentence (evidence) s is to be considered,

and it is desired to know its probability of being true. This is the common interpretation

for probabilities of sentences. On the other hand, inference mechanisms in, say, expert

systems, require some form of logical deduction to reach decisions. In the presence of

uncertainty (about the trueness and falseness of sentences), it is reasonable to invent a

iTij multi-valued logic in which the (probabilistic) truth value of a sentence s is taken to be

its probability P(s) of being true. This logic is termed probability logic. Its base space

remains a Boolean ring as in classical two-valued logic, while its truth evaluations range

over the unit interval [0, 1]. Its difference with the simplest form of fuzzy logic lies in its

U! non-truth functional calculus (derived from axioms of probability measures) as well as in

the interpretation of the meaning of degrees of beliefs.

Consider a finite collection of sentences, that is n subsets a1, ..., an of 92 (or

equivalently, n elements of a Boolean ring R). These sets generate a finite partition of

2, namely (a -a1 where i (0, 1', j= 1, .., n (with the usual convention

a0 = a', al = a, as before).

In logical terms, these sentences generate m (< 2 n) sets of possible worlds. In each

of these sets of possible worlds, one can specify the true/false values of any Boolean

expression of the variables a, (that is, component sentences) using its normal disjunctive

form as usual. For example, two sentences a, b generate four sets of possible worlds,

I, namely ab, ab', a'b, a'b'. A possible world is a state of nature, or, in the "sample

space" setting an element 0) E 2. However, unlike statistics, one cannot "perform an

experiment" to get the "outcome" co. Consider three Boolean expressions fl(a, b) = a,

Li f 2 (a, b) = a -4 b = a' V b, f 3 (a, b) = b. A "truth matrix" for these expressions is obtained

by specifying their truth values on each of the above sets of possible worlds (in the order

written)
du
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M= 1 0 1 1 f 2

L1  0 0 o f3.
ab ab' a'b a'b'

In terms of normal disjunctive forms,

a = ab V ab',

a' V b = ab. V a'b V a'b',

b=ab Va'b,

so that

1P(a) = P(ab) + P(a'b),

P(a' V b) =PI(ab) + P(a'b) + P(a'b'),

[L P(b) = P(ab) + P(a'b).

If we set

X1 = P(ab), x2 = P(ab'), x3 = P(a'b), x4 = P(a'b')

and

r ?r1 =P(a), r2 =P(a' V b), 7r3 =P(b),

then r =MX, where

=[ 2 X= X2
73 j x3

H X4!I.

The equation 7r = MX represents a "consistent" condition for the assignments xi's. To

include the condition x + x2 + x3 + x4 = 1 (besides xi >_ 0), one usually adds the row

(1, 1, 1, 1) to the top of M and modify 7r to

The general probabilistic entailment problem is this. Given a. and 7t. =~i)

1 . 1

i = 1, ... , n and a sentence of interest b. In view of the above procedure detailed in the

example, one first needs to include b into the collection of the ai.s, so that a partition of
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is formed by the a a i. k E (0, 1). Label these sets in some order, say

j = 1,..., (< 2n+1), and set x.= P(c). Let M be the (n + 2) by m matrix (with first

row consisting of all I's) representing the true/false values of the a's and b in the c's,

let

1 I 1

7r

P(b)

and let

X m

Formally, to solve for P(b) , delete the last row of M (corresponding to true/false values

Mn+2 j= 1,...n of b in the c's), and P(b) in 7r. Then solve for X in the

equation MX ir. If a solution X is found, then

m

P(b) = M,+ 2, x1
j=1

To obtain bounds for P(b), a similar procedure as in Hailperin's work is used.

In the following, we will first determine best upper and lower bounds for basic

connective A and V in the conditional case, then proceed to outline a generalization of

Nilsson's computational procedure to a conditional setting. Specifically, we are seeking

best lower and upper bounds for P((a I b) (c I d)) and P((a b) V (c I d)). First, observe
4, that

L (alb).(cld) (alb), (cd).
k. T hus

P((alb).(cld)) min(P"' .b), P(c Id)) ,

by Theorem 1, and equality is achieved, say, when (aIb) _ (c Id). Next,

(alb) V (cld) = (abIb) V (cdld) = (ab V cd jab V cd V bd) ,

so that
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P((alb)V(c Id)) - P(abVcd)
P (abVcdVbd)

P(abVcd) ,, P(ab)+P(cd) - P(alb) +Pcd)
P(bd) P(bd) P(dlb) P(bld)

Hence

P((ajIb) V (cjId)) :9 minf[i-, P(a Ib) ~~ d
Pfdlb) P(bld)

The fact that this is the best upper bound follows from abcd = 0 and ab V cd bd.

II .ote that, since P is not additive on R JR, this upper bound is not a function of P(a Ib)
and P(c Id) alone. Obviously, when b = d = 1, it reduces to the bound in the
unconditional case. However, as in the unconditional case, we still have

((aib) V (cld))' = (ajb)'.(cjd)' = (a'jb).(c'jd) ,

((alIb) -(clId))' (a'Ib) V (c' 1d)
p and

P(alb)' = P(a'lb) =I- P(alb) ,

S so that the lower bounds for P((alIb) -(clId)) and P((alIb) V (cjId)) can be obtained from

the upper bounds of P((a' I b) V (c' [ d)) and P((a' I b)-(c' Id)) , respectively as

P((a b)(c d)) I -min(1, P(a I") + P(c'Id) )-rax[0, s+ t- 11,
P(blb) P(b I d)

where

S = [P(alb) + P(dlb) - 1J/P(dlb) ,

Ii t = (P(cld) + P(bld) - 1II/P(bld) ,

and

Lj ~~~P((alb) V (cld)) : 1 -mn{nP(a' Ib), P(c' Id)) = max(P(ab), P(cld)).

Turning to computational procedures in the conditional case, we first observe that a
conditional event (a Ib) (with a - b) generates a partition of 1 consisting of the three
sets ab, a'b, and bV. (since a 5 b implies ab' = 0 .and a'b' = bV). Also,

N* P(alIb) = P(ab) + P(alIb)P(b') .
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To put it differently,

rP(ab)
P(aIb) = [1 0 P(alb)] P(a'b)

[P(b')

Thus, consistent with three-valued logic framework, for a Ib, we assign the truth value 1
on the set of possible worlds ab, the value 0 on a'b and the value P(alb) on b'.

See Chapter 7. -More generally, consider n conditional events (a Ibi), i = 1, 2, ..., n.

In J1 inThe associated partition of 1 consists of "m sets of possible worlds a,1 ..an I .. b"n
with m < 22n. Label these possible worlds as cj, j = 1, 2, ..., m. The "truth values" of

each (ai bi) in these are determined as follows.

0 if cj. ab i

t(ailbj) 1if c. aib.
P(ai bi) if c. < b'

Thus, if we let the "truth values" matrix M = (t(ajb.)], ri = P(aibx), = P(c,

7r7-

and

* then 7r =MX.

Now if (cJd) is a conditional event of interest, and it is desired to compute or
approximate P(c d) in terms of the 7ris (conditional beliefs), that is, to see how strong
(c I d) is entailed probabilistically by these conditional beliefs, one proceeds exactly as in
the unconditional case. Specifically, add (cld) to the (aiJbi)'s and consider the

i I nJ1
collection of sets of possible worlds a ...a n b b n (of m elements,

m' 22(n+)). Label these elements as cj, j = 1, ... , m. Add the top row consisting of

all 's to M, and I to the top row of 7r. Solve for X (where xj = P(c.)) in
j =

7= MX .
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Then P(c I d) = NX where N is a 1 x m row vector whose entries are truth values of

(cld) on the c's.

5.3 Random conditional objects

L Conditional random variables

Conceptually, random variables are well-behaved numerical (scalar or vector-valued)

functions whose domain is some initial conceptualized space reflecting the problem of

interest. Matheratically, one begins with a probability space (9, ,, P) and two

random variables say X : 0 , Den, Y : 9 -4 e. The relevant joint random variable here is

(X, Y) : 2 -9 1nP+" where, for any Co e 92,

(X, 1)(o,) = (X(), Y(wO)).

[Then, X and Y can be considered marginal random variables relative to (X, 1), with all

three inducing probability spaces

F',n, Bt , poX-1), (ffn, B', Po- 1 ), Cen, '+n, po(X, y)-,

where Bk is the real Borel field of subsets over k-dimensional Euclidean space For

Hany sets ale Bm, a2 E Bn , and

X'I :I ' f 4'

1,1 Bn _, .4,

and

we have
-1 - -1

Ii (Po(X, 10")(a x a2) = P(X (a1 )nY(a2 )),

-1 Pp n (a1 )2)-1

(PoX'l)(al) = P(X'- (a,)) = Po(X, )' )(a, x [Rn)

and

L'. (PoY' )(a2) = P(Y' (a2)) = (Po(X, Y))'(L1m x a2 ).

Note, also, using the notation b = (bI , ..., br) e (i+n)r and obvious notation to

indicate arbitrary combinations of basic operators, that any Boolean operator over B + n
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is preserved by (X, Y) " with corresponding evaluation

I (Po(X, ') )(cornb( U, '; b.)) = P(comb(A, U, ";tX, ') (b))),

where

Xy) 1  = ((X, Y)F (bj), ...,(X, 1 (bX))6i.

U) Consider again a2 e Bn , with P( (a2)) > 0. Then one defines the single

conditional random variable

1' by
(XIY '(a2))(o) =X(0o), co E rq (a2).

That is, (gIY' (a2)) is the restriction of X to Y'I(a2 ). In turn, (X Y' 1 (a2 )) induces the

(conditional) probability space (X()" (a2 )), ,X Y;a2 , PX{ Y;a2 ) on its range, where one

assumes 0 )
i X(yI(a2 )) X(o) :) E (a2 ))= X(o): Y() E a2) EB m

v and

-11 j~Ya2= X(yIr(a 2 )) ABrn= X(y'(a 2 )) o b • b E

Now, for any a1 E Bin, and hence for any b = X(y[I(a2)) r) a, E ,(Xay;a2 ,

SIj (X y'(a2))'(b)=X'1](b)ny) I(a2)

i =X' (a,) nr Y(a 2 )= (X, Y)'(al x a2 ).

Hence,

PXY;a2 (b) = Po(X iYI (a2 ))" (b)IP (Y " (a2 ))

f:,., = (x- -( a, ) n YI (a 2))1P(Y ( a 2))

= Po(X, Y)'l (aI x a2 )]P(y'I(a2)) @1
I p)l()) (1)

P(X a i-

Our approach here of viewing a single-conditional random variable (X Y 1(a)) as
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the restriction of X to the fixed event Y'(a) is the same as R6nyi's (1970, p. 72)

random variable (defined on a conditional probability space) with respect to the condition

Yl(a). The double conditional random variable is given by (XJr()) :I'Y e y n

,1 where

;fiX, y= u (T-l(a2 ( a2}

{ - {a2:a2eBnp(yol (a2))>O) ( 2)xa 2))

and for any a2 E Bn with PC'f(a2)) > 0; 0 r'(a 2 ),

(XJI (-))(o, [a2)) = (XIY'(a2 )(o).

Hence, for any a2  B with P(y-1 (a2 )) > 0 and for any a EL Bm,

P (XlrIY(.())Ia, (a 1 (a2))'(a1). (2)

The extension of single and double conditional random variables to include sets a2
of probability measure zero in Bn can be accomplished through use of the
Radon-Nikodym Theorem. Given all of the above standard development of conditional
iandom variables, it is natural to inquire whether a direct connection can be established

between these entities and an appropriately constructed random mechanism over the class

1.. of all conditional events. For any a E Bm, b e Bn, define the conditional event

[l (alb) = (axb!Rm xb),

[j and define the Krnecker form :C2 -' 0 ((0)

f 0ol 'f2={ ¢ol ct)

Similarly, for any 0)co, 2 E n and s E R , t E R,

()J 1)2) = ((C )1 2) K2x ( ' ,

(sit) = ((s, t)) Ie x (W)
to with

S(BmR
n) = (si)" : ER, , I nr ,

"-(B'l B n) = (alb) • a E Bm , b e Bn}



166 Conditional events and probability

". e
,, nl =(01 IC02) CO CoI 2 e E2,

(., (o fo) = (cd) : c,a d 

Use also the convention for equal exponents

i (Bi xB r'2 ! xB) = ((alb):a,b eBxBn}.

B{ Then define the random conditional event mapping (XIY) : (Q I Q) -. (!RnmJD) by

(X1 O l I r2)) = ((X, Y)( (01, 0))! x Y( 2)).

It follows, by a slight abuse of notation, omitting the (0) term, that, extending via

F functional images, (XII) to (xji): I 4g).(gIBj) , one obtains for any

c,d E f,

S(XlY)((c d)) (= ((X, Y)(8co, c 2)) : coE c, O2 d) l(CL x Y(co2)) :o)2 : d))

H. (X, 1(C nd) I enX y()),

where

( X, Y)(c n d) =(X(o), Y(o)) : co E c n d),

£3 and
Y~d) = {c() : Y(Qo : (j) e d).

Next, consider the inverse mapping for (XI Y), at any (a1 ja2 ) E (Bm Bn).1! 1XY'la 1 )la

(XIY) (ala2)= ( cld) :c, d E .4 and (XIY)(cld) = (X, 10((X,IY l(a, a2)))

S= ((cld) : c,de ,W and cd= (X, y)'(a, a2) ,d= y' (a2))

=([c:c e .,and c- I' I (a -X a) y'(a2)} 'l(a2 ))

U(X (aI) I y- (a2)) y- (a2))

(X(a, Y (a (3)
Comparing (1)-(3) shows that

P((XIY) (a la2)) = e(x' (a1) Y (a2))
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= (Po(x I y(a2))-I)(a1 )

! i = P'o(XIY' ()'(a,, {aP}, (4),

f so that in a natural sense (Xj) and (X1Y0- can be considered te equivalent
conditional event random mechanism corresponding to double conditional random variable

(XI XY'(.)). Moreover, using (3) and the operation preserving property of X-1 and Y-

it readily follows that if f: (BmBn)i -- (BmIB n) is any r-ary extended Boolean function,

Li then (XY)I preserves f, that is,

i (XY) oOf=fO(XYY (5)

analogous to the preserving properties of X, Y, (X, 1') relative to unconditional operators.fIn summary, analogous to how the double conditional random variable

(Xl r1(.)) - II(-) -, up

and its operator inverse (XIY-1 (-))- I :Bm -4 i determine from the probability space

.I (91, ,4 P) the induced probability spaces

one gets that fardom conditional event mapping

Li (XIY): (Q n) - ( 1,enIR) , (.4

I determines from probability space (9, .,4 P) the induced "conditional probability" space

i((,e+n IUe+n)' (Bn ×X I ×n 1B ), p°o(Xl ]0 ,

where P is the conditional probability extension of P. That is, P (4j -4 [0, 1] is

defined for any c, d E ,/, and hence (c Ijd) e a4 by

1((cId)) = P(c id) = P(c n Ad)IP(d),

provided P(d) > 0. The chief relations between, and evaluations for, double conditional

random variables and random conditional events are given in equations (3) and (4).

II. Random sets

It now becomes clear in the literature of uncertainty in Al that the mathematical
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concept of a random set is the cornerstone for evidential reasoning (for example, Hestir et

al, 1990). For background on random sets see for example Matheron (1975), Goodman

and Nguyen (1985). Below, we will illustrate, through an example, the use of

(measure-free) conditional events and their algebraic structure in a problem of combining

conditional evidence. For more details, see Nguyen and Rogers (1990).

In a given problem, we make the basic assumption that our knowledge at each state

is expressed by a probability measure. When new evidence is obtained, this is to be

"updated" by some "combining." We interpret an evidence as a realized event supplied by

some "test" which might be merely the opinion of an expert. This lack of precision in

evidence suggests looking at a less precise formulation of randomness, namely random
sets. Roughly speaking, a random set S is a measurable function from (92, ,4) to the

t power set of some set E, equipped with appropriate a-field.

For ease of reference, we present below basic aspects of random sets in the context

Uof Dempster-Shafer theory of belief functions. For more details see Bestir, Nguyen and

Rogers (1990). A random set S on a space 8 is described as follows.

Let V7 be a subset of the power set .9(0), o( 1) a a-field on K and (0, X, P)
U a probability space. A random set with values in V' is a map S from 92 to V7 which is

,f-a( V)-measurable. Briefly, a random set S on 0 is a triple ( V, a( V'), Q), where

Q = ps-1.
For a given 0, there are two general ways to specify the objects making up a

random set.

(i) If re= 3(0), then a( V) is constructed as follows. Let O be the collection of

L all finite subsets of G. For i,j E. , [i,j] = (x E,9(E) : i<_x<5.j), where < denotes set

inclusion. Let X = [ Ii, j'] : i, j E 9). Then a( $7) is taken to be the a-field generated1. by .XC, denoted as o ( X). Each probability measure Q on o(¢ X) determines a random

set with values in ,9(0).

$:[I (ii) If 0 is a topological space, then the topological structure of e can be taken

into account. For example, consider the case E) = IR, the real line, or more generally, (

a locally compact space. Let , ., Y be the classes of closed, compact, and open
subsets of IR, respectively. If V9= ,, that is, if we are concerned with closed random

sets, then Y can be given a topology -r using the open subbase

FE 5:FnK=0 for KE )

and
(Fe ,:FnG 0,for Ge

Then o( $) = o(r) is the Borel a-field on g in this topology. Each probability measure
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on (5, o(i)) determines a closed random set.

As in the case of random vectors, one can associate with each random set S a

generalized distribution function (GDF) characterizing S. In case i), given by the two

spaces (K2, - P) and (.9( (), o( X), Q), and the map S: 2 -4 .9((), let

9' j' : j 5 ). Define

y F: 5'... [0, 1]
t~i byBFs(j') = P(S jy') = Q[0,j'].

It can be shown that

SF 5 (E) = F (') = Q(O, 0']) = Q(PE) = 1,

p and for i, j r:

Q([i j, ) = (J])a((w V In',

where i Idenotes the cardinality of i, and

a 1 t:5i, IuI a) .

Thus, in this case, a function F: 5'' -4 [0, 1] uniquely determines a GDF if and only if

LF(O)=1I and for all i,j e

I I

U (4)a I F((j V t') ZO0.

ii'"
a .=O lei

Fo w e ape , if denot s thinaity , th ndT Y E) e

Thus,~ ~ ~ ~ ~a inb thi case, a: fucinF:0. 0 nqeydtriesaGFi ny

b:9a

By the M6bius inversion formula, we get

F(a) ( = frAb),

b a

so that f is a "density function" on F(E)). Define Q on .(® .9(E) by
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!n

[ =

[-" Q({a," ...,a n})i1 ff a i) "

The probability space (,(e), .9.9(e), Q) specifies a random set S on E.

In case (ii), given by the spaces (DZ, C, P) and (5, cr), Q), and the map

S: Q-.fthedomainofaGDF F willbe ,N'=[K' :K e X). Let T: XJ-4 [0,1,

and T(K) = 1 - F(K'). As an application of Choquet's theorem (Matheron, 1975, p.
30-35), a function F on K' uniquely determines a GDP if and only if

(3 (1) T(0) = 0,
(2) if the sequence Kn in dcreases to K in , then T(K ) -4 T(K),

(3) for all n _ 1, all K, K], .,Yn  in X, the following functions are

non-negative:

91 (K; K 1) = T(K V K1) - T(K),

U 9P2(K;- K1, K) = 91(K; K1) - pl(K V K2; K1),

n(K- ; , _, Kn) = g(K; K1, ..., K _) - 9n_,(K V K ; K1, ... , K 1)

Such an F uniquely determines a probability measure Q on (Y, o(-)) such that for all

K r X, F(K') = Q((0, K']).

L When 8 is finite, a belief function Bel on E is a map Bel: .5-(E)) - [0, 1]

defined by

Bel(a) m a),

where the basic probability assignment function m satisfies: m(i) 0 and

U ~m(b) =1.
be .9(e)

Thus, a belief function is nothing more than a GDF of a random set S such that

P(S = 0) = 0. (See Shafer, 1990.) Belief functions on finite se!s can be characterized by
. various set functions. Indeed, let S be a non-empty random set on a finite set e. Ifl

Qs(a) = P(a< -S),
"" then
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Qs(a) = I ms(b)"
a:5h

Also, by the Mbius inversion formulae (See Rota, 1964, or Aigner, 1979.),

! : mS(a) = I (l)Ia'bBes(b)= ('1)Ib-aIQs(b).

b:9a agb

[ Finally,

PLs(a) = P(S r) a ; 0) = 1 - P(S n a = 0)

= 1- P(S5 a') = I- BeIs(a').

It is interesting to note that the commonality QS can be viewed as the Fourier transform
of mS (see Thoma, 1989, 1991). In other words, Qs is the "characteristic function" of
S. Of course, the harmonic analysis involved is over a semi-group structure.

The interpretation of belief functions in terms of random sets allows the rigorous

formulation of the problem of combining evidence, where each piece of evidence is
assumed to be represented by a belief function. Specifically, using the concept of

* conditional events, two (non-empty) random sets S1 and S2 can be combined into one

non-empty random set (S1  S2 IS1 () S2 * 0).
In the following, the range of S will be simply a finite Boolean ring R or a finite

subset of an arbitrary Boolean ring R. In this case, S is completely characterized by its
generalized distribution ft.,,ction (GDF) FS , called in the literature a belief function
(Shafer, 1976). FS(a) = P(S < a), where P is a probability on (92, 4).

A typical situation in the problem of updating of knowledge is the following. The

measure Po on the range of the variable of interest is postulated but only partial

information about P0  is available. This is the Bayesian case of incomplete prior
information. Specifically, consider the case where Po is unknown, but we are given

(say. by an expert) that a, b, c E R, a and c are Po-independent given c, that

P(a Ib) = a, Po(c b) =/3. The question is: what can be said about the values Po(r I b)

.' for the other r e R? Consider the (Boolean) quotient ring R IRb'. We extract the prior
information as foiows.

Let X, ' be random sets with values in the power set of RIRb', '.Xh ranges

{(alb), (a' jb)), ((cib), (c' Ib)), respectively. Also, (note th'at P is on (.Q, .. '),

P(X= (aib)) = a=- 1-P(X (a' b)),
PndL ~,_P(' = ,:b)) = ,6 1 - P(Y = (c' Ib)).
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I.

Fl We combine X and Y through the random set Z with range

{(acIb), (ac' Ib), (a' cib), (a'c' Ib)),

with probabilities (in view of conditional independence assumption)

ap3, a(I - P), (I- a)A , (I - a)(1 -

1respectively. See Section 5.4 for the concept of qualitative conditional independence.

The GDF of Z is the map R IRb' -4 [0, 1] defned by

FZ(r b) = I PZ(aic ib),

I(azb-) 1 rjb)

where PZ = P Z 'I as usual, and where a, is a or a', and ci is c or c'. In terms of
the order relation < among conditional events, (alcilb) (rib) if and only if aicb r.

Forall (rib) 'ERIRb',

Fz(rIb) 5 Po(RIb) .

Replacing (rib) by (rib)' = (r' Ib) in this inequality, yields

" Po(rIb)5 1- FZ(R' Ib).

V Based on the available evidence, for r e R, an interval approximation for Po(r I b) is

[FZ(rIb), 1- Fz(r' Ib)].

1. 5.4 Qualitative conditional independence

Qualitative independence (or Q-independence for short), or measure-free or

algebraic independence of ordinary events is a well-known concept (for example, R~nyi,

F., 1970). It is not simply for academic interest that the above concept should be extended to

L. conditional events. In fact our motivation for considering Q-independence comes from the
problem of fast computations in inference networks of expert systems. For example, in

some models of medical diagnosis, the variables of interest are represented as nodes in a

graph, the causal relationships among these variables are represented by (directed) edges
of th.- graph and the strengths of such relationships are usually quantified by an

uncertainty measure (Bayesian probability, Dempster-Shafer belief function, Zadeh

possibility measure). In Al activities, there is no general agreement on the choice of such

uncertainty measures (see for example, Henkind and Harrison, 1988). Thus the design of



i

Qualitative conditional independence 173

inference networks (or influence diagrams) should be done without reference to the

uncertainty measure used. Not only some sort of "independence" assumption generally

' simplifies the calculations within the knowledge representation, but by the very nature of

many application domains, neighboring interactions among variables exhibit some form of

f ~ conditional independence. This is typically the case of Markov random fields (for

example, Lauritzen and Spiegelhalter, 1988).

First, we give a brief historical background. The concept of Q-independence of

events was treated in some detail in R6nyi (1970). With our notation concerning a

Boolean ring R, two elements a and b of R are said to be Q-independent if and only

f if ab, ab', a'b, a'b' are all not 0 (implying also that a, a', b, b' are all not 0). One1.;

possible interpretation is clear: viewing elements of R as events, if, for example,

B a'b = 0, then a < b so that when b is "realized," a is also realized, it follows that a

and b cannot be "independent." It is easy to check that P-independence implies

?S Q-independence: P(ab) = P(a)P(b) > 0 implies ab * 0, and the rest follow by the use of

complements. This concept of Q-independence of non-zero a and b can be

reformulated as follows.

Let r(a) = [a, a'), 7r(b) = [b, b') be partitions of 1. Then a and b are

Q-independent if and only if for all a E 7r(a), and all ,P E a(b), one has 3 *0 . If we fix

1 a and b through their indicator function 1 a and Ib, then the following equivalent

definition can be used to extend the concept of Q-independence to variables. The a-field

" generated by Ia is o'(la) = (0,1, a, a'); similarly, c(ab) = (0, 1, b, b'). Then a and

b are Q-independent if and only if for all a E a(la)\[O), and ,ll Pe a(lb)\{O}, one has
• 0.

LJ Next, to be concrete, let R be a a-field of subsets of some set n. Let X and Y

be measurable functions, defined on (n2, R), with countable ranges in the real line [R. Let

. the countable partitions (with no empty subsets) generated by X and Y be

correspondingly,

.1 7r(X= {a, Y)= [bin}.

Then X and Y are said to be Q-independent if and only if rX) and 7r(Y) are

Q-independent in the sense that for all a 6 nX), 13 E nr(Y), one has a3 # 0. Note that the

a-field generated by X is

O a(X = v a• IC X(92)},

whereaiX(i) for i E X(92), and I could be 0. From this, X and Y are

Q-independent if and only if for all a E o(X)\{0),13 6 o(Y)\(0), one has a3 0.
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Recently, Shafer et al (1987), also motivated by the study of inference networks in

expert systems, defined Q-conditional independence for finite partitions, or equivalently,

for variables with finite ranges. They did not consider the concept of Q-conditional

independence for events. As far as we kmow, Q-independence of "continuous!' variables

has not been discussed in the literature; also, Q-conditional independence was not

addressed in R6nyi (1970). Below, we follow the recent work of Nguyen and Rogers

(1990) to present a comprehensive discussion of all the above mentioned notions.

p Back to the abstract setting, let R(V, A, ', 0, 1) be a Boolean ring.

Definition 1.

Li! (i) Let A and B be two subsets of R consisting of non-zero elements. Then

A LB ifandonlyif for aeA and bEB, we have ab O.
R

(ii) Let a, b E R. Then a . b if and only if

R

.r(a) = (a, a') . b, b') = g(b).
U R

(t) Let X and Y be discrete variables. Then X L Y if and only if a(X) . af()
R R

if and only if for a e o(X)\{O) and b E o(Y)\{O, we have ab # O.

For the concept of Q-conditional independence of events, we observe that

P(probabilistic)-conditional independence of a and b given c is expressed by the

formula

P(ablc) = P(alc)P(blc),

which can be rewritten as

1((ab Ic)) =P((ac))P((bIc)),

where we use P as a function on RIR with arguments (abJc), (aIc), (bIc), ... , viewed

as conditional events. This suggests that one could define (a j b) and (c d) to be

independent with respect to P if and only if

P((a I b) (c d)) = P((a Ib)) ((c I . @
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Definition 2

(i) Let a, b, c e R. Then a .bIc if and only if
IT] P

P(abIc) = P(aIc)P(blc)

ifand only if

)'((alc)(blc)) = P(aIc))(bIc).

(i Let a, b, c e R. Then a and b are Q-independent given c, in symbols,
a . blc, if and only if (alc) t (blc), if and only if for (c Ic) E 7r(alc) =

Q RIRc'
|] ((aIc), (a' Ic)) , andfor (PI c) e r(bIc)= ((blc), b' Ic))

we have
~(alc).q,6lc) * (Olc).

Remark. (a1c).(/31c) (OIc) isequivalentto (aplc) (Oc) orto ca3c 0. Also,in
considering ir(a c), it is implicitly assumed that (a I c) and (a' j c) are not (0 [c) which
is equivalent to ac 0 and a'c O. Moreover, it can be checked that the Q-conditional
independence in Definition 2 (ii) is strictly weaker than that for finite partitions in Shafer
et al (1987). Indeed, in our notation, their definition is expressed as:

" Let X, Y and Z be discrete variables. Let

" A(c, ng)) = ((alc):aE 7rX, ac 0).

Then, X . YIZ if and only if rX) . 7r(Y) I Z) if and only if for ce E(Z),

IiQ Q
A (c, r) (c, r()) .

R/Rc'

We see immediately that if 1a L 1b Ilc according to this last definition, then a L. b lc
Q QH. according to definition 2 (ii), but that the converse does not hold. Thus, unlike the

unconditional case, Q-conditional independence of events cannot be defined in terms of
variables. In order to define a Q-independence which will be compatible with stochastic
independence for "continuous" variables, it is necessary to pay attention to "small sets."
In probability theory, these are P-null sets which form a a-ideal of subsets. This structure
is abstracted to c-ideals (for example, Halmos, 1963), a notion dual to that of the "bunch"
in R6nyi (1970). See Section 5.1.
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[1 In the discrete case, one needs to consider only the trivial a-ideal (0). If P is a

probability measure on R, then p = [a e R : P(a) = 0) is clearly a a-ideal. Now

X . Y if and only if aSLo(). ) in the sense that for a E oX) and b e u ),
P P

P(ab) = P(a)P(b). If a E o(X)\p and bE o( \4, then P(ab) > 0 which implies
that ab g 41p so that ab 0 . If we were to require only that a e oX)\{0), it could

happen that either P(a) = 0 or ab = 0. Thus we are led to

Definition 3. Let X, Y, Z be real-valued measurable functions (defined, say, on (i?, R)).

[(i) X Y if and only if there isa a-ideal X such that for a e og)\,k andQ
b e oO)\K, we have ab # 0.

(i) X . YIZ if there is a a-ideal X# such that for a E oX)X\ , b ez o(Y)X\,, and

c E (Z)\X , we have a. bc.

HO

Li'

.i
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CHAPTER 6

L CONDITIONAL PROBABILrIY LOGIC

Ii Unlike Adams' approach to a logic of conditionals (Adams, 1975), we will take
advantage of the rich algebraic structure of the space of conditional events R JR to
develop a conditional probability logic (CPL). The concrete syntactic component of this
logic is especially useful for the purpose of automation. The problem of modeling
defaults and production rules in expert systems using measure-free conditionals as well as
aspects of non-monotonic deduction will be discussed in Chapter 8.

11 6.1 Essentials of probability logic

In a sense, logic is about the study of knowledge representation languages in which
the basic notion of entailment (for inference) can be captured. We are concerned here
with the situau.n- in which the uncertainty in our knowledge is taken in a quantitative

.]way. See for example, Bibel (1986) for general methods of automated reasoning.
However, because of the relevancy to the treatment of conditional events, weIaddress only the probability logic approach to managing quantitative uncertainty in expert

systems. See, for example, Bibel (1986), Pearl (1988) for both Bayesian and
non-Bayesian formalisms. The so-called probabilistic logic (Nilsson, 1986) in AI has

been discussed in Chapter 5, together with an extension to the conditional case. In this
.chapter, we are concerned with probability logic and its extension to conditional

probability logic from the viewpoint of mathematical logic. Since the CPL developed in
this chapter is a direct extension of probability logic (PL), we will first review the basics

ii[" of the latter. We start with a review of classical two-valued logic (C2 ).
In C2 , the base space is a Boolean ring R (representing propositions) with its usual

operators and relations. Taking the concept of truth as the (only) primitive notion, one
proceeds to derive the concept of logical entailment. Each element of R is either true (T
or 1) or false (F or 0), that is the truth-space of R is (0, 1). To emphasize the fact
that elements of R are true or false on different "possible worlds" one introduces the
concept of models. Roughly speaking, a model (or semantic valuation) of R is an

assignment of truth values to elements of R. However, such an assignment should be
logical (or consistent), that is, it should be such that no element of R could be
simultaneously true and false in the same assignment. Further two elements a, b are



178 Conditional probability logic

both true if and only if their conjunction ab is true. The mathematical translation of the

concept of consistent assignments is that of a Boolean homomorphism. The truth-space

[0, 1) is viewed as a 2-element Boolean algebra. That is, for x, y E (0, 11,

I. xy = main (x, y)},

Sx v y = max x, y),

0"=1, 1' =0.

We use the same notation ',A (or .), and V on both the spaces R and (0, 1). A map

[I h R -4 (0, 1) is a (Boolean) homomorphism if for a, b E R

h(a') = [h(a)]',

h(ab) = h(a)h(b),

and

h(a V b) = h(a) V h(b).

The first condition is equivalent to h(a) # h(a')).

A model is defined to be a homomorphism R - (0, 1), and we denote the set of all

models of R by H. Thus an element a e R is true in the model h E H if and only if

h(a) - 1.

For further syntactic development, and for concreteness, we look at an alternative

way of formalizing the concept of models. For elementary background on ideals and

L filters, as well as some algebraic logic, see for example, Mendelson, (1970), or Halmos,

(1962, 1963). Since each h : R -4 (0, 1) can be identified with a subset of R, namely

. hI(1), we can consider the space 92 = {h' 1 (1) : h E H) as that of all models of R. We

describe now the elements of 92. Let co = h-1(1). Then first, co c R, is a filter of the ring

R. That is,

(1) 1 E co (1 is the greatest element of R),
L.J

(2) If a, b co then ab e co, and

(3) If aE a) and bER,then aVbE co.

Let a E co. Then a = a-1 and h(a) = h(a)h(l), implying that h(1) = 1, that is, that * )
,h-1 

1-k

1 E a) = h (1). If a, b E Co, then h(ab) = h(a)h(b) = 1, so ab E c. For (3), a = a(a V b),

so that I = h(a) = h(a)h(a V b) = h(a V b). Thus = 1 (1) is a filter.
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Moreover, each o) = h'1 (1) is maximal, that is, o) is a proper filter, meaning that
co R, c: equivalently, that 0 g o, and if yc: R is a filter such that co c Y, then either
7= co or 'y=R. Since h(1)=lE 0, h(O)=h(1')=' 0, whence 0e o, and a) is
proper. Let y be a filter such that co c y. If oo)& y, then there exists b E y with b e 0).
Then h(b) = 0, so h(b') = 1 and b co and hence b E y. But then, since y is a filter,

bb' =0 Ey,and Y=R.
Thus, elements of a are maximal filters of R. In fact, all maximal filters of R

can be described by homomorphisms, that is, i2 is the set of all maximal filters of R. To
see this, it suffices to show that if y is a maximal filter of R, then its indicator function
1 R 17 : R-0, 1}, defined by 14a) = 1 or 0 according as to whether aE 7 or a g %is a
homomorphsim. The condition that h(a) h(a') turns out to be a characterization of

I1  maximality for filters.

Lemma 1. Afilter y of R is maximal if and only if for a E R, either a E 7 or a" E 7

(but not both).

-Proof. Suppose that y is a maximal filter and that b e . Then

S[3= (xy : x E, b y)

is a filter). Taking y=l gets 7_cf3. Taking x=I and y=b gets be (3. Thus 13
[ strictly contains y, and thus 1 =R. Hence 0 = xy for some x E 7 and y _> b, and so

x~y" <_b'. Thus b' 7

L The proof of the converse parallels the proof above that co = h'1(1) is maximal.

. From the lemma above, it is easy to check that indicator functions of maximal filters
are homomorphisms. Indeed, by Lemma 1, ]#') = [].(a)]'. For a, b E R, we have

[F. liab) = 1 if and only if ab E 7 if and only if a, b E 7, lab) = Iya)1b). Similarly,
1,(a V b) = l(a) V 1.A(b), and 1y is a homomorphism.

Regarding the set 92 of maximal filters of R as the set of models of R, an
element a E R is true in a model Co E 2 if a E 0.

Remarks

I. Since filters and ideals are dual in the sense that if a is a filter of R, then
a W = {x' :x a) is an ideal, and if - is an ideal, then y' = [x' : x E -) is a filter, the
classical Stone Representation Theorem for Boolean rings can be also stated in terms of

I maximal filters (that is, models). Specifically, define i: R --, q,(n), power set of 92, by
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Vi(a) = [)E 92: a E C}O )

n Then /(O) =0, V<1) =, and for a * 0, ly(a) & 0. (he third property is not a trivial

one. See the second remark below.) By maximality, for 0) E 0 and a E R, if a E Co

then a'e o), so that

-~' = [y(a)Jc.C=
c.

(We use ()c, n, and u for set operations on ,'()). Also, a, b E o) if and only if

Uab Eo o, implying

i,(ab) = W'(a) n V(b) .

This, and DeMorgan's laws readily yield

y/.a v b) = u(a) v I~b).

Hence Vp is a homomorphism from R into 9(92). iy is one-to-one since '1(0) = 0.

Thus an appropriate subset of models is identified with a proposition in R, namely, a

proposition a is identified with the set of models co in which a is true.

2. The characterization of maximality in Lemma 1 is a property shared by atoms of

R. For a E R, a # 0, and an atom a, we have either a5 <a or o:< a' (but not both). In

fact, the principal filter R V a = (r V x: r E R) general by an atom a is maxiinal.

Lj Moreover, a is the unique atom in R V cf In general, the class of all maximal filters n)

of R is larger than that of these principal maximal filters. However, if the ring R is such

that every maximal filter is principal, then they coincide. That is, R V a is maximal if

and only if a is an atom. Indeed, if b <a, then R V b properly contains R V a, b

being in the former and not in the latter. For example, if R is finite, then models of R

can be identified with atoms of R.

We continue now with the basics of C2 . For deduction, we consider the concept of

.! logical entailment relation, denoted by F. Roughly speaking b logically entails a, in
symbol b F a, if whenever b is true, a is true. In our setting here, this means that b iF a

L.." if and only if for (0 E [, if b E o), then a E co. The following fact is well-known.

I" Lemma 2. b F a if and only if b5 <a.

Proof. Suppose b5 <a. For ) E 92 such that b E oo, we have a = b V a E co, since

o is a filter. @1
Conversely, suppose b F a. For each co E such that b E 0), we have, by

* " hypothesis, a E co, and hence ab E a) since o) is a filter. We are going to show that
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Ii
b = ab. Suppose ab < b, that is, b(ab)' 0. But then, there is ye 0 such that
b(ab)' E y. Now b(ab)' <_ b implying b e y, b(ab)' < (ab)' implying (ab)' E y, that is,
ab e y since (o is maximal, which is a contradiction.

Remarks

1. In the proof above, we have used the following well-known fact. If x E R and
x # 0, then there is a maximal filter Co such that x o. R V x is a filter containing x,

[and this filter can be enlarged to a maximal one. That statement is not at all obvious,
involving set theoretical niceties such as Zorn's lemma. It should be noted also that for
each element x # 1, there exists a maximal filter not containing x. Indeed, any maximal

filter containing x' has that property. In particular, the only element contained in every
maximal filter is 1.

2. A simple proof that every non-zero element of R is contained in a maximal
filter, in the case of atomic R, goes as follows. As noted, R V x is a filter containing x,

Band since R is atomic, there is an atom y with y < x. Then R V y is a maximal filter
containing x.

3. It is obvious that b5 _a if and only if b - a = b V a = 1, that is, b - a is a
tautology. (An element x is a tautology if for every o E 2, x E Co. Thus the only
tautology is 1). Lemma 2 expressed the logical entailment relation F in classical
two-valued logic in terms of the (partial) order relation _<. This explains the monotonicity

v of F (due to the transitivity property of ). For more details, see Chapter 8.

Now to Probability Logic (PL). PL, as a multi-valued logic, has been treated, for
example, in Rescher (1969), Hailperin (1984), Nilsson (1986). See also Goodman and

Nguyen (1985). The formal language of PL is the same as that of C2 . Thus the base
space of PL is also a Boolean ring R. As far as AI is concerned, there is a need to
generalize C2 to PL in order to reason with uncertain information, such as in expert

systems.

For each sentence a E R, there are ,wo sets of "possible worlds" (that is, models):
(co:a ao, and (o: a r col. Not knowing the actual model, one considers the

probability of a being true as a "truth value" for a. This is obviously a generalization of

C2 . In view of the axioms of probability measures on R, PL, with truth-space the unit
interval [0, 1], is a non-truth functional system. A model for PL is simply a probability
measure P on R.

In view of Stone's Representation Theorem (in terms of maximal filtwrs of R),
models for PL can be also viewed as probability measures on a class of subsets of models
in C2 . Also, with its axioms, each probability measure P on R acts like a "homomor-

phism-like" map. As in classical deduction, the concept of probabilistic entailment
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* * relation is crucial for probabilistic reasoning in intelligent systems (for example, Pearl,

1988; Neapolitan, 1990). See also Hailperin (1984), Nilsson (1986).

P
We say that a is probabilistically entailed by b, in symbols b I a, if for all

probability measures on R, P(b) P(a). In view of Lemma 2 of Section 2.2, this is

I equivalent to b < a or b != a. Also, a e R is a probability tautology if P(a) = 1, for all

probability masures P on R. Again, by Lemma 2 of Section 2.2, this mean that a = 1.

At a practical level, probabilistic entailment is defined as the computation of the

probability of a sentence in terms of the probability values of other sentences. As

Hawthorne (1988) stated clearly, this entailment is in fact a "partial" entailment, that is,

entailment with "degrees." This is precisely the problem of combination of (probabilistic)

evidence. The decision as whether or not to "infer" a from the bis depends upon the

magnitude of P(a). A computational procedure for thUs prcblem is given in Nilsson

(1986). See also McLeish (1988), and Section 5.2. For discussions concerning PL and

non-monotonic logics, see for example, Grosof (1988), Hawthorne (1988), and Chapter 8,

Section 8.2.

t Probability logic is sound and complete. We close this section with the concepts of

truth semantics and of probabilistic entailment in the conditional case (Adams, 1975).

This will be served as a comparison with our development of conditional probability logic

in the next section.

First, we take this opportunity to clarify several basic aspects in Adams' book, in

(. view of the mathematical development of the conditional space RJiR and its associated

three-valued logic (Chapters 2, 3). By Lewis' Triviality Result, it is seen that if we assign

[Jl conditional probabilities to "indicative conditionals," then these conditionals, at the syntax

level, are not, in general, elements of the Boolean ring R. This fact is expressed in Pearl's

[ book as "conditionals are non-propositional" or "... classical logic does not possess an
operator equivalent to the conditioning bar (-) in probability," (Pearl, 1988, p. 475,

482). In Adams' book, it is expressed as "conditional propositions are not assumed to

tL correspond to subsets of a sample space," and as "these objects do not have truth values"
(Adams, 1975, Preface and p. 9). It becomes clear that, under the fundamental assumption

of Adams' work (p. 3), namely "the probability of an indicative conditional is a
conditional probability," a conditional "if b is the case then a is", is a subset of R

rather than an element of R. As far as truth values are concerned, it is apparent that

Adams was referring to classical two-valued logic. Each conditional (a b) does have

truth values, namely true (1), false (0) or undefined (u). As such, we agree with Adams

that "probabilities of conditionals are not equal to their probabilities of being true." All

the above can be proved in our representation of conditional events (a I b) as cosets of

RJR).
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1Let P be a probability on R. Of course P(a I b) is a function of P(ab) and P(b)
A

(when P(b) > 0), and it is true that the truth-values of (al b), denoted as r(a b), is a

t ifunction of t(ab) and t(b). Indeed,

I if t(ab) = I
I. r(alb)= 0 if t(a*b) = 1

u if t(b )= 1

where t: R -4 [0, 1) is a Boolean homomorphism. The knowledge of t(ab) and 1(b)

completely specifies t(alb), since (ab, a'b, b') is apartition of 1.

The point is this. Since (alb) is not "Boolean," its truth-values should not be
r ~ restricted to [0, 1). we see that, with the truth-space being (0, 1, u), conditionals are

truth-functional and their probabilities are conditional probabilities. On the other hand,

contrary to Adams' attitude concerning Lewis Triviality Result (Adams, p. 35), namely

L J"The author's very tentative opinion on the "right way out" of the triviality argument is
that we should regard the inapplicability of probability to compounds of conditionals as a

fundamental limitation of probability, on a par with the inapplicability of truth to simple

conditionals. What is needed at the present stage is less mathematical theorizing than

close examination of the phenonenon of inference involving these problematic

• "nconstructions, ... ", we have resolved these problems from a mathematical analysis. Indeed,
1first, there is no problem with compounds of conditionals, since there is no need to assign

probabilities directly to such objects. Simple conditionals have truth-values in (0, 1, u),

and, as cosets of the ring R, have well-defined probabilities as conditional probabilities

. (see Chapter 5). Viewing R IR as the space of conditionals with three-valued logic, we

can derive basic connectives on it (see Section 3.4). Given a system of auth tables in a

L three-valued logic, there corresponds a system of connectives A, V, ', say, on R IR.
These connectives are operators on RJR, that is, any compound of conditionals is a

' simple conditional, so that probability is assigned in the same way as for simple

conditionals.

" (a In our notation, R is a factual language, and R IR is its conditional extension, and

(a Ib) is b * a, in Adams' notation for conditionals. Let t : R -4 (0, 1) be a truth

function. Adams considered the "truth-conditional semantics," that is, truth evaluations on

RIR as follows.

a) (alb) is "verified" under r if t(a) = t(b, = 1,

1) (alb) is "falsified" under t if t(b) = 1 and t(a) = 0.

But, in our development of three-valued logic for RIR, (x) and P) say nothing more than
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i.

the truth-values of (a1b) are I and 0, re-ectively, in {0, u). Of course, when a
conditional (a I b) is neither verfie.d nor fa~sifik,, its truth-vaue is u. It is this

"non-verification values" u which Zompletes, the discussion concerning sem-enics of

conditionals.

Finally, as mentioned in previous chapters, aihough conditioiah; are no: ireated as

mathematical entities in Adamse book; Adqm.s did propose basic cor*e':tives am'nvg them,

namely "contrary," "quasi-conjunction" ad "quais-disjunction" (Adain, !975, p. 46-47).

These connectives were proposed earlier by Sch-y (Schay, 19R), and wcre redis-.oveed.

in an indenendent work, later by Calabrese (Calabrev., 1987). Thece cor.necti-es

correspond precisely to Sobocinski's ;hree-valuei logic. (See Secei n 3.5.)

Now to Adams! E-semantics. From fi. formal lanIguage -1' (or R), ef classical
Atwo-valued logic, cons:der its extens:-.rn ' to "conditional forrulas," denoted

A
FX ..= [a * b, a, b - X). a -1 b stands for zn indicative condidonal of the form "if a is
t the case then b is" in natural language, for examnple, in ordinary English. In t2 stady of

A
probabilistic semantics fcr deiauit remsoning (Pearl, 1988, Ciapter 1("i, X' is the set of

default statemeats wnich art, "non-propositicnal" in the nnse tha i they inveive the "arrow"

connecting tw9 propositional formula. So a : b is non "Boolean," that is, a , b is not
San element of 4 or of the Boolean ring R. See aiso Dtuvois Pnd Prade (1999) for the

modeling of default tales by conditionals. Also. here - is na the material implication

=[ cornective --,. In fact, except for a mathemadcal representation of the object a * b,

Adams" intention was to provide a semantic evaluation map compatible with conditional
AA[ probability for 4 Basic connectives en ,. arc defined as follows (see Chapters 1, 4).

(a *b)" (a * bV),

(a b) tiAc * a)= (a A c * (a b)(c -d)

V (a * b) V (c * d) = (a V b * ab V cd).

t As before, a probability model is a probability measure P on ..-1. The asso-ia:ed
A

"truth conditional semantics" for ef is defined by

' A A-'/-# to. 11 P(a *, b) = Pklbla).

The set of cond'tional fornmulas {ftai  bi), i 1 ! ..... n) is said to entail the conditc a /

" • formula c * d if and only if for all e > 0. there is 6 > 0 such that for all P on 4'forV

which P(a) >0, i = 1,..., n and P(c)> 0 , if Pcb.Ia) 1-6, for i = 1, .... n. ,,.,
. ?P(dIc; >, I - c. This concept of entailment in Adams' conditional probability logic is
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A
suitable for default reasoning in AI in which X is a collection of propositions and ._V is

a set of default statements. Indeed, for a default statement a * b = "almost all a's are

b's," one translates "almost all" into "P(b I a) is arbitrary close to 1, short of actually
being 1" (Pearl, 1988, p. 480); moreover, the set of defaults

{(a hi), i = 1, ... n

logically entails. (c- d) if P(bi ai) is "high," i = 1, ..., n, then P(d c) is also "high."

For more details on this "e-semantics," we refer again the reader to Pearl's book (1988).

6.2 Syntax and basic properties.

Let the Boolean ring R be the base space for classical two-valued logic (also for
probability logic). The base space for the conditional probability logic (CPL) we are

going to develop is the mathematical conditional extension R R with its algebraic

[I structure established in Chapters 2, 3 and 4. Now elements of R JR, that is, "conditional

formulas," are mathematical entities, and we can describe special elements of R I R as in

the case of R. Specifically, we are going to describe syntactically "contradictions" and

tautologies on R JR, in a manner compatible with truth conditional semantics in Section

!, 6.3. By the same token, various characterizations of implicative relations in CPL are

given, generalizing those of material implication in classical logic.

First, in probability logic, an element a E R is called a "contradiction" or a
"P-tautology" according to P(a)= 0 or P(a) = 1 for all probability measures P on R.

By Lemma 1 of Section 2.2, these are equivalent to a = 0 or a = 1 . The counterparts

of 0 and 1 on RIR are nov described. Observe that RIR = u R[Rb' where each
L bER

RIRb' is a Boolean ring with its contradiction and tautology (01b), (1 jb), respectively,

provided b * 0. Thus,

U Definition 1. The classes of zero-r-pe conditionals and unity-type conditionals are,
respectively

T= {(Ob), b R\(01)

and

X_'= ((lIb), b E R\,O}

In the Section 6.3, we will show that these concepts are compatible with truth conditional

semantics on R IR. The following theorem summarizes basic properties of 27 and A.'
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Theorem 1
(i) Both F and Vlareclosedunder and V on R IR,

(ii) T (resp. 1) has the ideal like (resp. filter-like) property: (R IR) - = S7
lI (resp. (RIR) V V1= 2e),

(iii) T u ((0 0)) is closed under ., V, + on R IR, -

(iv) T and 21 are "conmplementary" in the sense that

FT= ((bib)' :(blb)e 2) ,and

X= 1(o1b)" (0O1b) e .7
Proof. (i), (iii), and (iv) are obvious from the definitions of th' operations on R iR.

11 Since

(aib).(Olc)=(Ola'bvc)E W,

f (1i1)(Ob) = (OIb),

P (alb) V (cc)= (abIb) V (cIc) = (ab v ciab V c) e 1,

and

(010) V (bib) = (bib),

part (ii) holds. n

It is known in classical logic that the material implication b -- a is a tautology (that

is, b -i a = I) if and only if b < a (that is, b "strictly" implies a). This fact is a
characterization of the binary Boolean operator -i. In other words, -4 is the only binary

Boolean operator on R having this property. Indeed, it is obvious that if f: R2 -* R,

f(a, b) = b -a=b V a, then f(a, b) = I whenever b5 <a. Conversely, if f R2 -4R is
such that

f(a, b) = I if and only if b 5 a,

U then

f(1, 1) = f(1, 0) = f(O, 0) = ,
I,

and f(O, 1) = 0, so that the normal disjunctive form of f(a, b) reduces to

f(a, b) = ab V ab' V a'b' = a V a'b' = a V b'.

The situation in conditional logic is somewhat different in the sense that there are
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i:

various conditional Boolean polynomials in two variables satisfying the counter-part of the

equivalence betweeen strict implication in two-valued logic and being a tautology.

I .pSi....ifically, strict implication in two-valued logic is replaced by the order relation on

R IR (see Chapter 3), and tautologies in conditional logic are elements of 24 that is of the

form (bib) with b # 0.

.! We are going to characterize conditional Boolean polynomials f in two variables

satisfying the following equivalent condition. For any a, b, c, d E R with b, d & 0

f((alb), (c I d)) E

[if and only if

(a I b) (c I d)

IWe may assume without loss of generality that f is of the form

f= (alp) = (ala V 7),

where a, y: -1 R are Boolean functions, and ay 0. Theorems 2 and 3 below shedjlight not only on conditional logical operations taking values in 21, but also are needed

in proving that CPL is sound and complete (Section 6.4).I"
i2

Theorem 2. Let f" (R I R)2 -1 R IR be a conditional Boolean polynomial in two variables.
The following are equivalent.

(i) For a, b, c, d E R, with b, d # 0,

f((aIb), (cld))E V1 if and only if (cl d) (alb).

(ii) f is of the formf= (aI P) = (al Ia V 7), where

7-( a, b, c, d) = (ab)'(cd) V (a'b)(c'd)',

and a is a Boolean function such that a _ 71', and a # 0 when 71 = 0.

Proof. To prove that (i) implies (ii), we use the criterion that (cld) _ (alb) if and
only if cd < ab and a'b < c'd. This is the same as

or (cd)(ab)' = 0 = (a'b)(c'd)',*or

(ab)'(cd) V (a'b)(c'd)' = 0.

* Thus 71 = 71(a, b, c, d) = (ab)'(cd) V (a'b)(c'd)' = 0 if and only if (cld) (alb). For
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(i) to hold, f= (aj a V ) has to be such that 'y= 11, since otherwise it is possible that

simultaneously )(a, b, c, d) = 0, a(a, b, c, d) 0, and Ti(a, b, c, d) 0, contradicting (i).

That (ii) implies (i) is easy. o

The precise forms as well as the total number of fs in (ii) can be determined as

follows. Let

lab if i= 1

F: wi(alb)= ab if i 0
tb' if iu.

UWe have

p 7(a, b, c, d) = (ab)'(cd) V (a'b)(c'd)'

=a'bcd V b'cd V a'bd'

= wo(alb)wi(cld) V wu(alb)wl(cId) V wo(aIb)w.(c d)

-V(iJTJEJ wi(a Ib)wj(c Id),

where J = [(0,1), (u,1), (0,u)). Thus a(a, b, c, d) must be of the form

w (ij),K wi(a I b)wj(c Id),I " where

U- K = ((0,0), (u,O), (1,0), (1,1), (1,u), (u,u)).

As examples, for

1K = ((0,0), (u,O), (1,0), (1,1), (1,u)},

I! cz=a'bc'd V abc'd V abcd V abd' v b'c'd = ab V c'd.

When 7=0,

77" = ab V c'd v b'd' = 1.

But for b,d-O,b'd' <1, sothat ab Vc'd-0. Here, abVc'dv7l=bvd. Thusf is

of the form

f((a Ib), (c Id)) = (ab v c'dlb V d).
For
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K= (0,0), (u,O), (1,0), (1,1), (1,u), (u,u)),14

a= ab V c'd V b'd', which is not 0 when 71= 0. In fact a = 1 when /= 0. Thus

f((a Ib), (c Id)) = (ab V c'd V b'd' I1 )

since for all a, b, c, d E RI.

abVc'dVb'd' Vrl=1
These two forms have interesting interpretations. The last,

fi(alb), (cId)) = (ab V c'd V b'd' I1)),

ii is the consequent of Lukasiewicz's implication (see Section 3.4), where the consequent of
a conditional (alb) is defined to be C(alb) = ab.

Using Theorem 3, Section 3.4, it can be checked that the first form

f 2((aIb), (cId)) = (ab V c'dlb V d)

corresponds to Sobocinski's truth table for implication. This truth table is given in
Rescher (1969, p. 70) with the sign + (respectively -) in front of the truth valuess to

indicate "designated" (respectively, "anti-designated") values for consideration of
tautologies (respectively, contradictions) in multi-valued logic. We will discuss this
further in Section 6.3. Adams, Calabrese, and one of Schay's conditional disjunctions Vo

- are all defined to be

(aib) V0 (cud) = (ab V cdlb Vd).

Thus

f 2((alb), (c Id)) = (alb) Vo (c d)'.

" We will return to this observation in Section 6.4.
Not all subsets K of

{(0,0)O, (0,), (1,0), (1,1), (1,u), (uu)}

lead to ces satisfying condition (ii) of Theorem 2. For example, if

K = {(],0), (1,]), (i,u),(u)}

then

c= abd' V abcd V abc " d v bd" =ab v bd'.
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r

1.i Taking a=c=0 and b=d= 1, we hae,

ab'"V c'd Vb'd' 1,

so that '1(0, 1, 0, 1) =0. But a(0, 1, 0, 1) =0. Thus a(a, b, c, d) ab V b'd" does not

satisfy our condition (ii).

We now look closer at f, and f2. First, since ft = (ala V q7) with x = 71', we

[see that for all a, b, c, d e R,ft satisfies

fl(a Ib), (c d)) i 2 if and only if (c d) _< (a b). (*)

Now f2 does not satisfy (*). Indeed, when '1 = 0, we have abc'd = b V d. This

equality holds also when b = d = 0, but then f 2((a 1O), (cl 0)) g 21. However, f2 satisfies

f((a I b), (cld)) r 21 if and only if (c I d) _ (alb) and b or d # 0

Indeed, when (cId) _ (alIb), we have ab V c'd = b V d. If b or d is 0, then ab V c'd

= b V d # 0, and hence f 2((alb), (cld)) E V. Convers,:iy, iff 2((alb), (cld)) E 21, then
ab V c'd = b V d--0, implying that 71 = 0 and b or d& 0. On the other hand fl does

not satisfy (**), since fj((ajO), (c10)) E .
It turns out that (*) and (**) characterize f, and f2, respectively. Consider first

the condition (*). As before, f = (a I a V 7), where

1: a(a, b, c, d) = V(i,&K wi(aIb)wj(cId),

ji with

K 1,0), (u,O), (1,0), (I,1), (1,u), (u,u)}.

We are going to show that if K is a strict subset, then there is an (a, bi c, d) E R4 such

that a(a, b, c, d) = 0. We only have to look at subsets of ab V c'd V b'd' = T1'. We

already know from above that if a is ab V c'd or ab V b'd' or c'd V b', then f will

not satisfy (*). Thus it suffices to consider subsets of the form ab V c'd V xyb'd' or

abVxyc'dVb'd" or "xyab V c'd V b'd', where x and y can be one of a, b, c, d, or

their complements. For example, in the case ab V c'd V xyb'd" where xyb'd' -. b'd',

Ithen when 77 = 0, we have ab V c'd V xyb'd' = ((xy)'b'd')', and it is easy to pick x, y,

b, d so that (xy)'b'd' = 1. The other details are left to the reader.
Consider now the condition (**). For (*) to hold,f= (ala V 77), where * )

a(a, b, c, d) = V(ij)K wi(a I b)wj(c I d),

.: with
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K (0,0), (u,O), (1,0), (1,1), (lu), (u,u)).

We are going to specify K so that (**) holds. We need to pick a so that o. > 0 is

equivalent to b or d being > 0. Now b or d > 0 if and only if b V d > O. Using the

decomposition of b V d in terms of the wi(a I b)wj(c I d)'s, we see that b V d if and only

if wi(a I b)wj(c d) > 0 for some (i, J) # (u, u). But when (c d) _ (a Ib), that is, when

71=0, we have wi(aIb)wj(cId) = 0 for all (i, J) E ((0, 1), (u, 1), (0, u)}. Thus

. a(a, b, c, d) > 0 when =0 and b or d7- 0 only for

TK 2 (o,o), (,) 10,(,) 1u)

But the upper bound of K is ((0,0), (u,O), (1,0), (1,1), (1,u), (u,u)), and it leads to fA,

which does not satisfy (**). Hence K must be 1(0,0), (u,O), (1,0), (1,1), (1,u)), which

yields f2.

j iIn classical two-valued logic, the equivalence realation " defined by

a i. b = (a - b) A (b -4 a)

is characterized as the only binary Boolean operation f such that

f(a, b) = 1 if and only if a = b.

" Using the definition a -i b = a' V b, this is routine to check. The counterpart in
% conditional logic is expressed in the following theorem.

Theorem 3. Let f: (R IR)2 -4 R IR be a conditional Boolean polynomial in two variables.

" Thefollowing are equivalent.

(i) For any a, b, c, d E R with b, d # 0,

' f((alb), (cId)) e V if and only if (alb)= (cld),

(ii) f is of the form (a a V 4), where

4(a,b,cd) = (ab + cd) V ( b + d),

V a is Boolean, ao 4', and a 0, when . 0.

Proof. First, (alb) = (cld) if and only if ab = cd and b = d. This is the same as ab +

"" cd=b+d=O,or (ab+cd)V(b+d)=O. Let

= e(a,b,c,d) = (ab + cd) V ( b + ).
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Then-
I: ab'cd V abd' V a'bcd v b'cd V a'bd' V b'c'd

S=v (j wi(a Ib)wj(c I ),

1" where
1:

J= ((u,0), (1,0), (u,1), (1,u), (0,1), (0,u)}.

Now, that (ii) implies (i) is obvious, and (i) implies (ii) since f= (a a V '1) will satisfy

(i)if D=. D

I. The specific form of a is

[a= V (ij)eI wi(a b)wj(c d),

where

I ( (0, 1, u)2 - J = ((0,0), (1,1), (u,u)).

• Again, not all subsets I lead to an a satisfying (ii). Two interesting candidates are

I = (0,0), (1,1), (u,u)),

and

S= (I,1), (0,0)).

For the first,

a =a'bc'd V abcd V b'd'.

1' Here, av= = " V =1,sothat

f 3((aIb), (cId)) = abcd V a'bc'd V b'd'

When =0, = 1, and hence # 0.

For I = [(1,1), (0,0)), a = abcd V a'bc'd. When = 0,

' = 1 =abcd V a'bc'd V b'd'.

But for b 0, d - 0, we have b'd' < 1, so that abcd V a'bc'd 0 for all a, c e R.
Here 3= Vy= b V d,and 0n)

f 4 ((aJb), (cjd)) = (abcd V a'bc'dlb V d).
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The conditional polynomial f3 corresponds to the consequent of Lukasiewicz's

three-valued logic equivalence, while f4 is the syntax of Sobocinski's three-valued logic

" equivalence. See Chapter 3 for more details.
It turns out that f3 and f4 are the only candidates. Indeed, for other I C (0,0),

(1,1), (u,u)}, one can find a, b, c, d, with b * 0 d, such that a(a, b, c, d) = 0 when
,(a,b, c, d) = 0. For example, ifI= ((1,1), (u,u)), then a = abcd V b'd'. Taking a = c

=0 and b=d= 1, weget (0,1,0,1)=0, and c(0,1,0,1)=O.

As a final note, f2 and f4 satisfy

f((alb), (aIb)) = (bIb).

6.3 Truth conditional semantics

This section consists of extending the basics of classical two-valued logic (C2) and
Probability Logic (PL) to Conditional Logiz (CL) and Conditional Probability Logic

(CPL). By Conditional Logic, we mean Lukasiewicz's three-valued logic on the
conditional space R IR, where R is a Boolean ring, or equivalently, R IR equipped with
logical operations developed in Chapters 3 and 4. By Conditional Probability Logic, we
mean a multi-valued logic with base space R JR on which truth-values are conditional

probabilities. The base space of CL is a (special) Stone algebra R JR (see Chapter 4).
Similarly, the truth-space of CL is the Stone algebra (0, u, 1), with 0 < u < 1, with the

following operators. (See Section 3.4 for the appearance of (0, it, 1) as the truth space
for R IR.) We use the same notation ', A, and V on R IR. In view of Lukasiewicz's
truth tables, for i, j e (0, u, 1), we have

i Aj = minfi,j), i Vj = maxli,j},

0' =1, 1 =0, U = U.

! • The pseudo-complementation on (0, u, 1) is 0* 1, u = , 1 = 0, which does satisfy

Stone's identity i V i = 1, Vi E (0, u, 1).
First, we formulate the concept of a model in CL.

Definition 1. A model in CL is a homomorphism from RJR to (0, it, 1), that is, a map

preserving the operators ", A, and V.

It turns out that models in CL can be built from those in C,. Specifically,
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r- Theorem1. W

(i) If o)E 0 is a maximal filter of R, then the map hwO :RIR -40, u, 1) defined

by
'Il if a b Et(o

ht(alb)= O if a'b Ec -

L u if b E 0)

F is a homomorphism.

(ii) If h : R IR -4 (0, ii, 1) is a homomorphism, then there is an ae E 92 such that
1. h-ho

Proof. Note that since (ab, a'b, b) forms a partition of 1, and co is a maximal
filter of R, h is well-defined. For the proof of (i) we have

I if a'b E (o

hffalb)') = ho(a'lb){ 0 if ab E W

u if b E )

In view of Lukasiewicz's negation on (0, u, 1) (see Section 3.5), we get

, hto(alb))' = [ht(alb)]'.

By DeMorgan's laws on RIR (Theorem 3, Section 4.1) and the fact that ' is involutive,

* it remains only to show that for (a I b), (cI d) E R I R,

(*) hto[(aIb), (cld)] = ho(alb)ht(cld).

Now

(alb)(cld) = (acla'b V c'd V b).

Since

ac(a'b V c'd V bd) = abcd,

and abcd e o if and only if ab E o and cd e (o, (*) is true for the value 1.

For the value 0, we have

(ac)'(a'b V c'd V bd) = a'b V c'd e a)

if and only if either a'b or c'd (or both) e o. Thus, in view of Lukasiewiczs

conjunction on (0, it, 1) (see Section 3.5), (*) is true.

Finally, the following are equivalent:
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0 (1) h0) [(alb)(ca)] =u,
(2) a'b V c'd V bd e co,

(3) a'b, c'd, bd e 0,
L (4) a v b', c V d', bv d' E 0,

(5) (a or b'Eo) and (c or d' E o).

Ii The case "only a and c are in Cd" is excluded, since then abcd r= w,
contradicting the condition hCO [(ajb)(cld)1 = u. All remaining cases correspond to

ti hco (alb)hco (cjd)= u. For example, if only a and d' are in o), then ab E o), d' e o,
and hence hC) (a I b)h0) (cld) = 1-u = u.

11 To prove (ii), let h :RJR -O (0, u, 1) be a homomorphism. Let g be the
restriction of h to R viewing R as R 11. This restriction g can only take values in

I {(0, 1). Indeed if there is an aE R such that g(a) = u, then since g is obviously a
homomorphism from R to (0, u, 1), we have

0 = g(O) = g(aa') = ga)ga') = [g(a)][g(a)]" = uu' = uu = u,

1which is impossible. Thus g is a Boolean homomorphism between R and (0, 1), and
hence is the indicator function 1co of some maximal filter w of R.

It remains to show that h = h. Observe that

(aIb) = (abl) V [(b' 11)(O0)I

* andi.

(010)' = (110) = (010),

which implies that h(01O) = h(010)" = [h(010)1' = u since u is the unique element in

- (0, it, 1) such that u' = u. Thus

h(alb) = I () (ab) V I (b')-u .

From this, since h0) (b')-u 5 u, h(aIb) = I if and only if IW (ab) = 1, if and only if

h o (alb) = 1. Next, h(alb) = 0 if and only if 1 = (ab) 1 (0 (b') = 0, if and only if
I l (a'b) = 1, if and only if h0 (aIb) = 0. Finally, h(aIb)= u if and only if I (ab)=
0 and 1O (b') = 1, if and only if h 0 (alb)=u.

In view of the Theorem above, models in CL are precisely [h.,, co (e0 }.
We investigate now two possible counterparts of maximal filters in the case of Stone

algebras. First, consider h0o1(1). Since (010) =(010)' does not belong to any h-(1),

the characterization of maximality of (Boolean) filters does not hold for h-oI(I).
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However, other properties of Co remain valid for h (). In particular, each set h (,)

is a filter in the lattice (RIR, A, V). That is, if (alb), (cjd)E ho,1(1), then

andif (alb)e h (1) and (cJd) eRjR, then

(aIb) V (cId) e hj(1).

In fact, since ht:'RIR -4 (0, u, 1) is a homomorphism, each h0 (1) satisfies the
following stronger conditions:

(1) (alb),(cla)e h- (1) if and only if (alb) A (cld) E hi(1),

(2) (aI b) V (CIda) E h (1) if and only if (aIb)e h1(1) or (cId) h j,(1),and

y-(3) 11h A ( 1)e 1, (o10) F hj(]).

Moreover, the class / of filters of RIR satisfying (1), (2) and (3) are the

h- 1 (1), w e Q. To see this, let Ac RIR satisfy (1), (2) and (3), and set Co=AnR,
!-

where R is identified with R 1I. co is obviously a filter in R. Moreover, for a C_ R,

either (al1) or (a' l) is in A, since otherwise,

tL (all) V (a'l1) = (1ll)

!,

will not be in A, by (2), a contradiction. Thus Co is maximal. It remains to verify that
-.- 1

A=ho -(I). If (aIb)e h (1), that is, ab ao=AnR, then (ab1l)EA. But

(aIb) A (ab1l) = (ab1), so that (aIb) : A by (I). Conversely, if (aIb) e A, then write

(aIb)=abV(b'-(0 0)) A. By (2), we have abeA or b'-(010)EA. But

b"-(010)e A holds only if b' eA and (00) gA, by (I). However, by 3), (00)A,

L thus only ab e A holds, that is, ab e o, so that h0o(alb) = 1. D

Considcr now h1 (u, 1)), co e f! Since h :RlR.-, (O t, 1) is a
(0

homomorphism, the following facts are easy to derive:

(i) h-j([u, 1)) n R = o, a maximA filter of R.

(ii) for (alb) E (RJR), (alb) E h- (u, 1) or (aIb)"' Y e h (t , )), or both.
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(iii) If (aib)Eh ({u, 1), then for (cld)e(RJR),(alb)V(cid)Eh- (u,l).

(iv) (alb) A (cid) e h1 (fu, 1)) if and only if both (alb) and (cid) are in
h ({u, M1.

(v) (alb) V(c1d)Eh-I([u,1)) if and only if (alb) h- ([u,1)) or
(c d) E ho)(1{u, fl).

(vi) for b-ER, (1Ib)E h Co{u,1fl).

(vii) (aIb) h o1(u, 1)) ifandonly if b-a= b' V ae co.

As in the case of h )1 (1), the class "( of filters of R IR satisfying (i)-(vii) above

is precisely {h 1({u, 1)), o E ).

[IRemark. Since (OI1)oh ({u, 1)), the filter h ({u, 1)) is proper. If AcRIR isa

filter satisfying (i)-(vii), and h ({u, 1)) cA, then h I({u, a}) = A, that is, h ((u, 1))
0)'Co

is "maximal." Indeed, we have Co c A r) R = a maximal filter of R by (i). But then

o = A o R. From (iii) and the above observation, if (aIb)e A then (b -4 a) E u),

implying that (aIb) E h ({u, 1)).

We specify now basic semantic concepts of CL. Recall again that n2 is the class of

models (maximal filters) of R. In order to define the concept of tautologies in terms of

models of R IR, we need to specify the class of "designated truth values" (Rescher, 1969,

p. 66-71). Indeed, as in any multi-valued logic, among the truth-values 0, u, 1, we have
to classify (or designate) certain of these values as "truth-like" values (for the concept of

{. contradictions, the dual concept is "false-like" values or "antidesignated" values). Thus, if

1 is the only designated value, then a lb E R IR is a tautology if it is "true" in all models

of RIR, that is, for we 2, (alb) E h- 1(1) . It is clear that (11) is the only tautology

in this sense. Indeed, (alb) c h'j(1) if and only if ab E w. Thus if 0 < ab < 1, then

. (ab)' # 0, so that there is some Co E 92 such that (ab)' w and hence ab e Co. Of

course, if ab = 1 then b > ab implying that b = 1, and (alb) = (ablb) = (111).

If (u, 1) is the set of designated truth-values, then (a b) is a tautology if for
L

(0 EQ, (alb) E h (u, 1}).
Co

:0 Now 0 < ab < b, then a'b 0, so that there is some yE Q such that a'b E , SO

that (aIb) h'l({u, 1)). Thus ab = b 0 0, that is, (aIb) = (abIb) = (bib) = (1 Ib), and

hence, the class of (u, 1)-tautologies is ((IIb), b e R[O)) which is the class of
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unity-type conditionals VX investigated in Section 6.1. Note that for co E £2,

hC(0 10) = u, so that formally (010) is also a tautology. To exclude (010), one should

require that (alb) is a (u, 1)-tautology if (alb) E h l(lu, 1)) for o)e Q, and there is at
least one y e Q such that hY (alb) = 1.

, The concept of entailment relation in CL is formalized as follows. We say that (alb)
, logically entails (c Id), in symbols,

CL(.j(a Ib) (c (I d),

' if for o) E 2, (cid) e h-, (1) whenever (aIb) e hJ (1), and (c d) E h, -({u, 1)

whenever (a I b) E h ({u, 1)). Roughly speaking, (alb) entails (c d) if the truth-value

! of (c d) is greater (or equal) than that of (a b). More precisely,

r i Theorem 2. The following are equivalent.

CL
(i) (alb) 1 (cld),
(ii) for oe n, h, )(alb) <_ h0 (cld) , and
(iii) (a Ib) 5 (cjd).

Proof. That (i) and (ii) are equivalent is obvious. To get the equivalence of (i) and
(iii), note that h 0 (alb) = 1 if and only if ab E o, and hW (alb) E [u, 1) if and only if

bV V a E o. This can be rephrased. For co 92, ab E (A implies cd a 0o, and for
0) E £2, b' V a E o implies d" V cc co. By Lemma 2 of Section 6.1, these statements are

equivalent to ab < cd and b' V a < d" V c, or ab: cd and c'd< _a'b which means

L (iii). (See Theorem 1, Section 3.3). o

As in the case of C2 , the logical entailment relation ' in CL is monotone. This
121

follows readily from the fact that h0) is a homomorphism. See, however, Chapter 8.
Now to Conditional Probability Logic (CPL). One of the practical motivation for

considering conditional probabilities lies in the construction of Bayesian (causal) networks

(for example, Lauritzen and Spiegelhalter, 1988). For quantifying rules in intelligent
systems with other uncertainty measures, see for example, Dubois and Prade, 1990. As in
the case of PL, if P is a probability measure on R, then P(alb) = r means that a is
"time" in 100 r% of the "possible worlds" in which b is "true." A model of CPL is an

A 0
extension P : RI R -4 [0,1] of a probability measure P on R, defined by

A
P((a Ib)) = P(a I b), for P(b) # 0.
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A
As in the case of probability models, P has the flavor of a "homomorphism-like" map.

A
See also the previous discussion concerning Adams' e-semantics. We write P simply as

P.

If 1 is the only designated truth-value, then (a I b) e R IR is a CPL-:autology if

P(a I b) = 1 for all P on R such that P(b) 0 0. The class of CPL-tautologies is

precisely that of unity-type conditionals 1 of Section 6.1. Indeed, if P(a I b) = 1 for all

P, then P(ab) -P(b), for all P, and hence ab = b (Lemma 1 of Section 2.2), so that

(a I b) = (ab!b) = (bIb) = (I I b). The converse is obvious. In the same vein, P(aIb) = 0
for all P if and only if (a Ib) = (0 1 b) e T, the class of zero-type conditionals in Section

6.1.

If {u, 1) is the set of designated truth-values, then (alb) is a {u, 1)-tautology if

(aIb) E h I(1) for at least one o e 2. This class of (u, 1)-tautologies also coincides

with V Indeed, let (Jib) 6 2, b 0. We have (Jib) E hj((u, 1)), for 0)e E since

bb' = 0. Next, since b # 0, there is some y E Q such that b e y that is, (J Ib) E h o1).

Conversely, let (alb) be a (u, 1)-tautology. We have a'b = 0, that is, b-5 a.

* Hence (a I b) = (ab I b) = (bib) with b # 0, since by hypothesis, there is 1, E'-2 such that
be .

The following theorem summarizes basic relations among all above concepts, the

proof of which follows simply by inspection.

i.
Theorem 3.

(i) The following are equivalent.

a) (aIb) = (cld),
3) for oE 92, ho)(alb) = ho)(cId),
) for j = 3 or 4, f ((alb), (cId)) is a CPL-rautology (f3 ,f4 of Theorem 3,

.. Section 6.2).

5) for j = 1 or 2, f((a I b), (c d)) and f ((cj d), (a b)) are CPL-tautologies

"' lf2 of Theorem 2, Section 62).

(ii) The following are equivalent.

c) P(aI b) = P(c Id) for P such that P(b), P(d) 0,

3) for j = 3 or 4, (a b) and (c Id) are CPL-tautologies, or (a b)' and (c jd)'

are CPL-tautologies, or fj((a b), (c d)) is a CPL-tautology,
) (aIb) =(cId) or (alb), (cld)E 2 or (aIb), (cId)e EZ.
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(iii) The following are equivalent.

a) (alb)--- (cld),
I] -for we 1", h,)(ajb) < hc,(cjd),

7)for j = 1 or 2, f.((a I b), (c I d)) is a CPL-tautology.

(iv) The following are equivalent.

a) P(a b).< P(cd for P such that P(b), P(d) * 0,
. 13) (alb) < (cld) or (alb)e T"or (cld)e V6,

1) for j -1 or 2, f.((aIb), (cld)) or (ajb)' is a CPL-tautology, or (cjd) is a

CPL-tautology.

In C2 , bI-a if and only if b-4a=b' Va=1. The counterpart of thisIi equivalence in CL is that (cld) F, (aIb) if and only if fl((alb), (c d)) or

f 2 ((a I b), (c Id)) is a (CPL)-tautology (that is, in 2M). Note that f, and f 2 play the role
of material implication on R. The equivalence above follows from Theorem 2 of Section

6.2.

Finally, the logical entailment relation in CPL is defined by

CPL
(c ld) I, (alb) if P(c d) :P(alb)

f :for P such that P(b) and P(d) 0.

CPL
In view of Theorem 3, (iv), (c d) I (a b) if and only if

L (1) (cld) <- (aib), or

(2) cd = 0, or
V (3) b5a.

We summarize the four logical systems discussed in this chapter.

Classical two-valued Logic (C2).

Alphabet/Base space: R
Logical operators and relations: ( A)', A, V, <, -',...

Equational axioms: Axioms of Boolean ring R

Truth space: (0, 1), designated value: 1

Models: Q = (maximal filters of R)
Tautologies: 1
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-Conditional Logic (CL)-
I J-Alphabet/Base: R[I

[ Logical operators -and relations: See Chapters 3 and 4: (Lukasiewicz's three-valued

logic)

Equational axioms: Axioms of abstract conditional space (Chapter 4)

Truth space: (0, u, 1), designated values [u, 1)

Models: (homomorphisms ho e £2)

Tautologies:. V= ((1 jb), b e R)

LProbability Logic (PL)

Alphabet/Base space: R

1 Logical operators and relations: same as C2

Equational axioms: same as C2

fl Truth space: [0, 1] designated value: 1

Models: (P : R -4 [0, 1], probability measures)

Tautologies: 1

Conditional Probability Logic (CPL)

Alphabet/Base space: R IR
Logical operators and relations: same as CL1.Equational axioms: same as CL

Truth space: [0, 1), designated value: 1

Models: (extended P from R to RJR)

Tautologies: V= ( (1 [b) : b E R \ (0))

L. 6.4 Additional properties of CPL

Although the concrete base space RJR is sufficient for applications, we present,
-- however, in this section basic properties of CPL in a more general setting. Recall from

I Chapter 4 that the abstraction of R JR is an abstract conditional space L in which its

skeletal set L plays the role of R, and L is isomorphic to the concrete realization

(L L).
As usual, the logical structure of CPL (L) is given by sets of rules (Rul(L)),

W deducts (Ded(L)), models (Mod(L)), semantic evaluations (P(L) =all probabili,..

measures on L ), tautologies ( V(L) where 2-(L) = ((bib), b E L \{0))), and axioms
(Ax(L) axioms of L as an algebraic structure, together with a set of logical connectives



202 Conditional probability logic

f (o) on L IL*). Note that, as a base space, (L* IL*) is a three-valued logical system. 0)
When f (o) is our set of logical connectives developed in Chapters 3 and 4, the

corresponding three-valued logic is Lukasiewicz's. Different choices of f (o) lead to

different three-valued logical systems.

In order to investigate deducts and tautologies, it is necessary to be able to identify
certain deducts as tautologies and conversely. Specifically, first deducts here are of the

form h(a) = _g(ix) or h(a)< g(a) where a is any collection of conditional event

variables and h, g are combinations of logical operators of L. In view of the remarks

U following Theorems 2 and 3 of Section 6.3, we can make the following identifications:

(h(d) = g(a)) f-fi(h(a), g(a)), i = 3 or 4,

(h(o) < g(a)) t-ifi(h(ax), g(cz)), i = I or 2,

In the case of R IR, we have,

Uf 2((alIb), (clId)) = e -((c Id) (ajIb)),

where e = ab V c'd V bd V b'd" and * is the extended material implication on R R,

that is, (cj d) (aib) = (c Id)' V (aI b). Note that f2 is Sobocinski's material implication.

Using the notation of Chapter 4, it can be checked that, the same situation holds in

the general case. Specifically, on L, we have

f2(' a) = e-( cO
L-; where here

I.. e v a' V ((a. a') (?.31)*

Thus f2 is definable in terms of the primitive operators of L. We are now ready to

prove the following.

UTheorem 1. CPL is sound and complete.

Proof. Using the above identifications, any deduct of L (in the form of equality or

inequality) is a single conditional event. By Theorem 1 of Section 6.3, its identification is

a tautology if and only if its corresponding deduct represents a true relation (equality or

inequality) which is obvious here.

For completeness, first note that, for a E L, c = f 2 (a, o). in particular, if
c E V1(L,), then f 2(c, a) is a tautology. Using the identification a: a *--i cx (as a
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9O deduct), a iS-itself a deduct.

Remarks1 1. Suppose that instead of identifying equational axioms and resulting deduct forms

as above, one replaces formally all axioms by the corresponding single conditional event

-forms depending on the h's. Thus to completely axiomatiz6 all relevant expressions,
-avoiding the introduction of external equality, single conditional event forms must be

[.J introduced as axioms characterizing f 2 4, in part. Therefore, one can ask whether it is
true that the added axioms in- combination- with new Rul(L) would yield Ded(L) as

-interpreted in the above -identification from the equational axiom approach. Here, the
-added axioms are

(for all -a, 3E L) (f4 (f2 (3, a), e.(3 a*)),

p (for-all 0 E L) (f4 (f4 (CC, P), f(a, 3) .f2 (P, a)))

and new Rul(L) is given by using f2 , f 4 analogonsly as the derived inequality (partial

ordering) 5 and equality

V For all /3, YE L,

If f(ex, -P), f.(3, ) are deducts, then so is f.(a, ), j =2 or 4;

f"(a, d) is always a deduct, j = 2 or 4 (this can also be an axiom).

1.: If f 4 (a, /3) is a deduct, then so is f 4 (p3, a).

In a related vein, Rescher (1969, p. 66-67) discusses changing Lukasiewicz
I r from a one designated truth value logic [u, 1), making a significant enlargement of tht

c lass of possible tautologies for the logic. Rescher states that the axiomatization of this

new logic is an open issue.
In view of our results in Chapter 3 and 6.2, toge,% " whd te identifications in L,

and with .. augmented with Slupecki's 'r-operator (Rescher, 1969, p. 163), and L

augmented with * , etc., necessarily with two designated truth values, the Theorem 1 in

this section seems to point to the possible adomatization of the logic Rescher considers

o .via the structure of L. But, more work is needed on this.

2. Abstract conditional spaces appear to be related to "implicative" algebras in

general (for example, Rasiowa, 1974). From an examination of the axioms describing

them, the more specialized pseudo-boolean o- quasi-pseudo-boolean algebras may also be

related. The relations need to be also explorud to determine any mutual benefit of results.
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3. By comparison of trath values of various conditional operators (Chapter 3) with

Sobocinski's truth tables given in Rescher (1969, p. 70), it follows that: (see also Dubois

fT and Prade, 1989) Sobocinski's logic with de,.*,n ated values (u, 1) coincides with the

choice of negation, conjunction and di.,il, as Schay-Adams-Calabrese have

independently done. Unlike Lukasiev.iczA * ,,, operator, Sobocinski's implication

is a material implication formed out of trr . .,(negation) and iv (Schay),

that is, j-.i has truth table given by ,..,(ltI()Ji), i, je {0, u, 1). See also

Sobochiski's original work (Sobocinski, 195d 'ere it is shown, as an alternative to

Wajsberg's well-known full axiomatizatio. or the associated expanded

axiomatization for Siupecki's extension of , via his r operator, corresponding to the

special element u° (or (010) in the concrete case of R), see Rescher (1969, p. 155),

that Sobocinski's system can be fully axiomatized. Furthermore, as a justification for the

Sobocinski's approach, by an analogous extension as Slupecki's, the resulting logic is seen

to also truth functionally operator-complete, being the only other known such system.

(See also Rose (1953), Schalz (1959)). Specifically, note that Slupecki's extension of -1
being truth functionally operator-complete translates, via Theorem 2 of Section 3.4, into

LJ
the fact that (RJR,., V, (010)) is a truth functionally operator-complete system

relative to all Fossible extends i Boolean conditional operators. Indeed, going back to

, since max ("or"), min ("anti' and 1-- ("not") can all be chown to be compounds only

-L of 3, so that (4 , u) is sufficient to span operationally all three-valued truth-functional

operators, hence by Theorem 2 of Section 3.4 again, the corresponding conditional

operators must, likewise, span all possible extended Boolean conditional operators.

Similarly, the enlarged Schay-Adams-Calabrese system, corresponding to the enlarged

r Sobocinski logic, is truth functionally operator-complete.

I Thus, via Theorem 2 of Section 3.4, one can now justify the Schay-Adam-Calabrese
approach to conditional event algebra as being equivalent to Sobocinski's logic, however,

.1 as noted earlier in Section 3.5, quite distinct from Lukasiewicz's logic, the monotone
bound violations for conjunction and disjunction notwithstanding! See, however, Chapter

;8, Section 8.2.

4. Using the technique of Theo:em 2, Section 3.4, we obtai, the following
three-valued truth tables for corresponding conditional operators:

(i) Recall from Chapter 4 that (R IR) is a relatively pseudo-complemented lattice
with relative pseudo-comp.ementation -4 given by:

(cld)-4 (ab) =(ab V c'd V b'd' Ib V c'd V b'd').
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Its truth table is

( = 1 for (i,J) e ((0, 0), (0, u), (0, 1), (u, u), (u,1), (1, 1))
H ~W(ij) = u for (i, j) = (1, )

, 0 for (i,]j) e (u, 0), (1, 0))

(ii) Tn particular, the pseudo-comphtmentation operator of (RI R) is:

(a b) =(a'b11)

I with truth table

VOi() =1, IPWu =0=YI

which is that of negation in Heyting's three-valued logic (as mentioned in Section 3.5).

(iii) The material implication on (R I R), (c j d) -(a j b) = (c Id)' V (a I b), has truth

{Y table given by

1 for (ioj (0, 0), (0, u), (0, 1), (u, 1), (1, 1))
i IVY(i,D = u for (i, je E (u, 0), (u, u), (1, u))

0 for (i, j)= (1,0).

(iv) Slupecki's -operator (Rescher, 1969, p. 163) has the following truth table

U [ !  corresponding to the constant function u, that is, iy(i) = u, for i E {0, U, 1)

U
Ii

[1.

L,
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CHAPME7

FUZZY CONDITIONALS

"This Chapteris devoted to the- extension of the measure-free conditioning concept -to
the fuzzy case. Motivated by a random-set connection and by the concept of generalized

-indicator function of conditional events, a form -of membership functions for fuzzy

-conditionals is proposed. It turs6ut that fuzzy conditionals are interval-valued fuzzy sets.
-Sy Syntax con siderations,. as Well as probability qualification of fuzy co- ditiorials, -re
-investigated. Pior tc- a formal -development of fuzzy conditionals, basic aspects -of
fuzziress anid fuzy logics are reviewed:

7.1 Generalities on fiziness

r The reader is-referred to Klir and Folger (1988) for an introduction to the theory of
-fuzzy sets, and to Zadeh (1988) for an excellent exposition of fuzzy logic and -its

i applications.

Human -communication is based on natural language. Natural language contains fuzzy
{ concepts such as "high;" "almost," "likely," "intelligence," etc. -From- a human viewpoint,

1 'fuzziness is well-understood, and can be taken as a primitive notion. The uncertainty in
-fuzziness is much more complex than that in randomness. Indeed, imprecision,

U subjectivity, and context dependency surround each fuzzy label in natural language. The
Un- imprecision and the context dependency of the above examples of fuzzy labels are clear.

By subjectivity, we mean that individuals might "understand" a fuzzy label in different
ways. In other words, fuzzy concepts are not universal (or objective), as opposed to, say,

-mathematical concepts. This is perhaps the main source of difficulty in trying to formulate
a semantic (meaning) information theory. See also MacLennan (1988).L Fortunately, there exists such a "thing" as common sense knowledge which allows us
to approximate fuzzy concepts in a reasonable fashion. Consider, for example, the
information "the temperature is high." A little reflection will reveal that, underlying this
statement, there are: a universe of discourse X, namely the range of the (variable)
temperature; the variable "temperature" t itself; and the fuzzy predicate a = "high."

- W Thus, the above information is translated into " is a." For this translation to be part of a

knowledge representation language, we need to model a more concretely. With respect

to X, a is "inside" X. The standard approach to translate this vague idea into
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mathematics is to regard a as a sort of subset of X. Specifically, the imprecision in the

word "high" forces us to consider a as a generalized subset of X, in the sense that

membership in a ranges over the unit interval [0, 1] rather than just (0, 1] as in the

case of ordinary subsets of X. Generalizing the concept of indicator functions of ordinary

sets, a semantic modeling of the fuzzy concept a is given by a membership function

{: 'ta "X -i [0, 1], where, for each x E X, ga(x) is to be interpreted as the degree to which

x is compatible with the meaning of a. Also, Iua(x) can be interpreted as the truth value

F. of the proposition "x is a member of a." Defining this way, a is referred to as a fuzzy

subset of X. (See Section 7.3 for a syntactic approach to fuzzy sets.)

Now, the subjectivity becomes apparent. For the same a, different individuals can
assign different maps ga The situation is diametrically opposite to that in random

analysis where each random phenomenon is governed by one and only one distribution

, law. When a random law is unknown, one can try to gather relevant statistical data to

estimate it or to test about it. This is possible since the law in question is unique.

From the above, we see that, to each fuzzy concept a (relative to X), there are

different interpretations of its meaning representation at the mathematical level. This

'1 flexibility is sometimes beneficial. For example, users of a consulting system can input his

IL, their own perception about fuzzy concepts.
At the level of application, a common sense membership function pa might be

desirable. This iia can be obtained in various ways. For example, by bias of profession,

a statistician might immediately think about getting A a by collecting data, say, in the

form of questionnaires and by constructing ga based upon a frequency approach.

Perhaps, this objective approach to constructing membership functions of fuzzy sets has

triggered statements such as "probability theory can handle fuzziness." We emphasize the

fact that, while at the practical level, a probabilistic approach to modeling fuzzy concepts

is reasonable (but not the only one), the primitive concept of fuzziness is clearly different
from that of randomness. In fact, a coexistence of these two notions is useful in Machine

Intelligence. Moreover, fuzziness has the luxury of producing membership functions from

human perception, when statistical data are not available. However, at the membership

function level, there is a specific relationship between fuzziness and probability theory via

the concept of random sets. This relationship shows that fuzziness is a weak specification

of random sets through the one-point coverage function. (See Section 7.4 for an

application of this relationship.)

It is appropriate here to say a few words about uncertainty. Statements like "all

statisticians agree on the use of probability to model uncertainty" (French, 1990) should be

clarified a little further. By uncertainty in statistics, we mean a very specific type



Fuzzy logics 209

of uncertainty, namely randomness. It is now well-accepted that, outside of statistics,

especially in AI models, there is a clear distinction between uncertainty and probability

(see for example, Bellman, 1978; Levi, 1973; Neapolitan, 1990). More specifically,
probability theory models one type of uncertainty, while in general decision theory, other
types of uncertainty may surface. Of course, by analogy with randomness, one can try to

i.- use statistical methodologies and techniques to model or to ipproximate other types of

uncertainty (see for example, Mosteller and Youtz, 1990). But the intrinsic property of
F each type of uncertainty remains unchanged (see the comments of N. Cliff following the

article of Mosteller and Youtz, p. 16-18). In our view, other non-probabilistic approaches
to uncertainty modeling are not alternatives to statistical tools. Rather they address

different problems in which the uncertainty involved is not statistical in nature (see for
example, Neapolitan, 1990). This is similar to the situation in quantum probability (for

II example, Gudder, 1988). The concept of fuzziness, as an example, is best explained in the
context of semantic processing of natural languages. (See again Neapolitan, 1990; also

[Levi, 1973). There are various reasons for ad-hoc uncertainty modeling to be attractive to
desig.. , of intelligent machines. This is a healthy sign in view of AI problems. For the

P problem of admissibility of uncertainty measures in expert systems, see Goodman, Nguyen
* and Rogers (1990).

So far, we have discussed the problem of meaning representation of fuzzy concepts.
Whatever approaches are taken, we have a collection of membership function Ila, a F A,
say, in a knowledge base of some system. The problem of interest is how to combine them

in order to extract information for decision processes. This is basically the problem of

using logic as a formal tool in artificial intelligence (see for example, Ramsay, 1988).

More specifically, a formal logic will provide us with a way of constructing a meaning
representation language in which facts, rules and deduction (for inference) can be stated.

{ ~ In this spirit, we are going to look at logical aspects of fuzzy sets.

ii 7.2 Fuzzy logics

Roughly speaking, fuzzy logic is a knowledge representation language in which facts

and rules involving fuzzy information can be represented mathematically, and in which
inference with fuzzy data can be described logically. Fuzzy logic is essentially a logic that

models the fuzziness in natural language.

To avoid confusion, it is necessary to classify different types of fuzzy logics.
First-order fuzzy logics refer to logics of fuzzy sets in which the truth space is the unit
interval [0, 1]. A fuzzy logic is called second-order if its truth space is the space of fuzzy

subsets of [0, 1]. In any case, fuzzy logics are multivalued logics.

A standard first-order fuzzy logic is proposed by Zadeh by specifying semantic
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[*.-operations among fuzzy subsets of X as follows. The class of all fuzzy subsets of X is
the set of maps (X) = f :X -4 [0, 1]) from X into [0, 1]. For f E 5"(X), the negation

- f" of f is defined to by f(x) = 1 - ffx). For f, g E 5rX), the "truth tables" for the
-connectives "and," "or" are, respectively

(V A fg) x) =j(x) A g (X) = min (RX), g x)),

and

r_: (f v g)Cx) = fx) v g x) = ,,axQ( x), g(k)).

, With respect to the truth space [0, 1], these are Lukasiewicz's logical operations. Of

course, this standard first-order fuzzy logic generalizes classical two-valued logic. See Klir

- and Folger, 1988, Section 1.6, for-details. This approach is semantic-in the sense that the

objects under study are membership functions, generalizing indicator functions of ordinary

subsets of X, rather than their counterparts of ordinary subsets of X. This point will be

A made precise in the next section.
When the above logical operations are applied to fuzzy subsets of [0, 1] viewed as

,1 truth values in a second-order fuzzy logic, the resulting logic is referred in the literature
simply as fuzzy logic. See Zadeh (1988) for additional details. When the truth space is

1! [0, 1], one can model the basic connectives "not, "and," "or" in various ways, extending

however classical two-valued truth tables of these connectives. For negation (or fuzzy

complement), one can use any negation operator, that is, any function

N : [0, 1] -4 [0, 11

$ such that

(i) N(O) = 1, N(1) = O,

I.: (ii) N is continuous,

(iii) N is involutive, that is, N(N(x)) = x, Vx E (0, 1], and
SJ (iv) N is non-increasing.

See for example, Bonissone and Decker, 1988.

LFor conjunction, it turns out that the class of t-norms (see Schweizer and Sklar, 1983)
is appropriate to represent conjunction operators. where a r-norm is a binary operation T

I
on [0, 1)] such that

(i) T is associative,

(ii) T is commutative
(iii) T is nondecreasing in each place, that is, if x<y and u<.v then

T(x, t) : T(y, v), and
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(iv) for x-e [o, 1]; T(x,1 )= x.

Note that (iii) -and (iv)- imply that T(O, x) = 0, Vx e [0, 1], in particular, T(0, 0) = 0.

Indeed, Vx e [0, 1], T(O, x): T(O, 1) = 0. A t-norm T is "Boolean-like" in the sense that
its-restriction to-the vertices Of [0,1 is a Boolean function, that is, T(x, y) = 0 or 1

- whenever x and y are 0 or 1. These functions are us;d, for example, in neural
networks to model activation- functions of the units in -the network. See for example,

. Williams (1986). Here; values in [0, 1] are viewed as degrees of activation. Note that

the associativity of t-norms is essential in- extending these binary operations to n-ary

II operations on [0, 1], n > 2.

Some common examples of t-norms are these:

[1T,(x, y)-=mnx )
T2(x,y =xy,

T3 (x,y) =max(x + y- 1, 0).

For disjunction, the class of t-conorms is appropriate. A t-conorm S is a binary

operationon [0, 1] such that

(i) S is associative,

(ii) S is commutative,

t] (iii) S is nondecreasing in each place, and
(iv) S(O, x) =xj and S(1, x) = 1, for all x e [0, 11.

[t-norms and t-conorms are dual in the following sense. If T is a t-norm, then

SS(x, y) =1- T(1- x, 1- y)

~ is a t-conorm, and if S is a t-conorm, then

T(x, y) = 1 - S(1 - x, 1 - y) is a t-norm.

Ui If the negation operator N is defined by N(x) = 1 - x, then dual t-norms and
t-conorms are related to N. Each triple (N, T, S) defines a first-order fuzzy logic. Thus,

one can speak of fuzzy logics (in the plural).

The t-conorms dual to T'1, T2' T3 are

Si(x, y) = max x, y),

S2 (x, y) = x + y - xy,
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S3 (P y) =nn~x + y, 1).

The triple- (N, T, S) given ..y

N(x) -1 - x,

(1T(x, y)=-min (x, y} and

S(x, y) = max(x, y)

B forms the collection of basic operations on fuzzy sets. It is -interesting to note that some
t-norms admni probabilistic interpretations. For example, if the t-norm T is such that for

x_5u. and y v,

(j! T(u, y) - T(x, y) <_7(u, v) - T(x. v),.

-then, T is a two-dimensional copula (see Schweizer and Sklar, 1983). That is,

2T: [0, 1] (0, 1]

II satisfies ()and41

a)-T(O,x)=T(x,0)=0, forxE[0, 1],and

b) T(1, x) - T(x, 1) =x, for x [0, 1].

t t-norms satisfy all axioms of two-dimensional copulas (or copulas for short) except
possibly (*). In general, copulas are not associative. The probabilistic interpretation of
copulas is this. The distribution function of a random variable { that is uniformly

distributed on [0, 1] is

(- ~O for < 0
F(x)= x for 0 :< x5 <1

U I for x > I

f ', If (, ]) is a random vector with joint distribution function

G(x, y) = P(g< x, -q: <y),

then the marginal distributions are

F (x) P(': x, 7 5+c) G(x,c-) ,

and
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F7(y) = P(< **, r7 y) = G(+o, y).

If Fg and F7, are both equal to F, then the restriction of G to [0, 1]2 is a copula.

Conversely, if T is a copula, then H: R. [0, 1] defined by

H(x, y) =T(F@x), F(y))

r is a two-dimensional distribution function each of whose marginal distributions is F,
[4 where R- denotes the set of real numbers.

Thus- roughly speaking, a-copula is nothing more than a two-dimensional distributionfunction on [0, 1] with uniform marginal distributions on [0, 1]. A basic result in

Schweizer and' Sklar (1983) is this. If H is the joint distribution function of (, 7), then
j ~ there is a copula T such that

fJ: H(x, y) = T(H(x, +oo), H(+-, y)), Vx, y E R .

The t-norms T1, T2 -T3 above are all copulas. For more details, see Schweizer and Sklar,
1983.

7.3 Syntax representation of fuzzy sets

Let X be a set. The power set of X is denoted by O(X). One can identify P(X)

with the space (0, 1) (f: X- (0, 1) via the bijection

[T (0: , 1}X -4 P(X)

[! defined by

= f1(1) = {x :f(x) = 1}-.

Two remarks are in order here. First, if a 6e (X), then 0'l(a)= Ia' the indicator
."unction of a on X. If P€(X) represents a collection of propositions, then it'is the base
space of classical two-valued logic or the "syntax part" of the logic. For each x E X, the

Li map hx : (X) -.4 (, 1) defined by

... hxa) = { if x E a
hX(a) = t zxa~0 if X E a'

is a Boolean homomorphism, that is, a model of C2. (See Chapter 6). Thus, the space of

indicator functions (0, 1) plays the role of "semantic part" of the logic, in the sense
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"tgnle h or simply x, a- is true or false in X according to whether

that,--given a model Xo i-s Xacrdnt
1 ~x~=1or 0.U
-Second,.the above bijection q can be writteni a more explicit form:

Ef(0,1-1- (f 1)X,

I with f'(1)c X. If we define, for-each tE [0, 1],

QA) = {x :f(x) -t} ,

thet for t >0,

SA = X, A(f)=f(1).

1; :Conveitely, given (a, X, with a c X, then

Sla(X)= supt E [0, 1]: x E At,

where A 0 =- X,A t = a, Vt> 0, is such that A =-Atla).

TheSe acts arecarried over to the fzzy case in a straightforward manner as follows.

In the standard approach, -membetship functions-are used to model fuzzy concepts. Thus, A I

the "semaitic part' of fuzzy logic is Y(X) [0; 1]'. The "syntax- part" is obtained a--in

the case of two-valued logic. Specifically, if f e 5(X), then the level sets- (or a-cuts) -f f

are, for a E [0, 1], Aa(f) = {x :f(x) a) a}. (See for example, Dubois and Prade, 1980.)

1.i The family of ordinary subsets A-a a E [0, 1], of X satisfies the following properties:

(i) a<f3 implies Ap ca ,

-(ii) A0 =X, and[:!. ~iii)-for I c [0, 1], -)A,,= Ara, " "

a SupJP

The condition (iii) is a form of left-continuity of the map A [0, 1] ,F(X) defined

by a- Aa in the sense that, for E (0, 1],

limA = nA =A =A

Ul aaa a<a a a a

where A + denotes IimA u A
ala>

It turns out that these three conditions characterize the syntax part of fuzzy logic.

Indeed, let us call a family (A , a r [0, 11) of subsets of X a flou set (for example, * )
Gentilhomme, 1968; Negoita and Ralescu, 1975) if the A 's satisfy (i), (ii) and (iii)
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above. Denote the class of all flou sets of X by ,5."X), and consider the map

p : 5(X) -. Y5.(X) defined by -P0() = {Aa(f), a-e6[0, 1]. Note that, a flou set-is in fact
ap A : [0, 1] -4 (X) given-by a Aa , and we write A= i(Aa,a E ( 1]) for

I simplicity. Thus, two-flou sets A (Aa a 6[0, 1]) and B = {Ba ae [0, 1]) are equal
if and only if Aa Ba for a e [0, 1]. It is easy to check that q' is a bijection. Indeed,
if = -g), then A(f) = A(g), for a e [0, 1]. But, obviously for x E X,

and f(x) =sup (a: x Aa)} ,

a -ence f-g, that is, q is one-to-one. To show that p is onto, we take an arbitary[3 flou-set A =(A a, a e [0, 1]), and consider its "characteristic function"

AX-4 [0, 1],

1~ where

p i VfA(x)=sup(a:xGAa}.

We are going to show that A.a is a a-level set of VA , Va [0, 1]. If XE Aaz then by

construction, yfA(X) >_ a. Conversely, let x be such that VA(X) :a a and

= 3 :x e A}, we have V/A(X) = sup Ix. By condition (iii), n A = AByn x
PEIx1 P A (x)"

(ii), A .A(x) c A . Thus {x : VA(X) _ a) c A a, and the result follows.

'The logical operations on 7. "V(X) can be defined in such a way that c9 is an
L . isomorphism. For this purpose, conjunction and disjunction are defined as follows. For

A={Aa,ae [0,1l} and B=(Ba, a c [0, 1]1,

A AB [AoB a e[0, ]},

and

AYVB (A uBa aE [0,1]) .

With respect to these operations, Negoita and Ralescu (1975) have established a lattice
(A, V)-isomorphism between 5(X) and , .- ,(X). This can be seen by observing that for
f,g X -4 [0, 1], we have for a E [0, 1),

{x :f(x) A g(x) a) = (x "f:,_ a) (x " g(x) a)

* Oand

{x :f(x) V g(x) >a) (x :f(x) .a) V {x "g(x) _ a)

*1
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The "negation" operator on 5" d(X) is defined as follows. From

[ A = (A a e [0, 1]),

look at its "characteristic function"

"fA(X) = sup[ a:x E Aa).

Consider V,(x) = 1 - iA(x), for x e X. Let A' = (A' a e [0, 1]), where A' is the

a-level set of 1'(), that is,

A' (x: • p(x) a)

Ii~~f xlIAxla)

= x sup{f3 xE AP) I - a)

= X \ {x : VA(X) > 1 - a)

S= x\ A(.a)+.

The negation of A is taken to be A' above.

Theorem 1. 9 is an isomorphism between (ff(X), (.)', A, V) and (5.(X), (.)', A, V).

Proof. In view of the previous analysis, it remains only to show that 9p preserves the

logical operations. The preservation of A and V is obvious. That of (.)' follows from

the fact that if pi = A = (Aa a E [0, 1]), then f= VtA' and from the definition of (-)'

v on YA.g(X). 0

More concretely, flou sets can be identified with partitions of X as follows. By a

[ ! partition of X we mean a map Q• J -4 ,(X), where J c [0, 1), satisfying

(i) for aeJ,Qa 0 ,

(ii) for a, l 3J with aP, Qa r) Q3p = 0, and

(iii)UQa = X.

Note that a usual partition of X is the range of a partition (map) in the above sense.

As in the case of flou sets, two partitions Q(l) "J, -4 9(X), 2 :J 2 -.4 (X)
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are equal if and only if J,= J2and Q~j for a r:J1

Theorem 2. Let O(X) be the space of all partitions of X, and 77 " (X) . ,'(X) be

defined by TI(Q) = A, where Q : J - 5F(X) and, A = V QP" Then 71 is a bijection.aPE J 3

Proof. First, 77(Q) so defined is indeed a flou set. Since Q is a partition, A0 = X.

U] Obviously, by donstruction, for , /3 [0, 1], if a5 13 then A c Aa . Finally, the
"left-continuity" of A is seen as follows. Let I c [0, 1]. If

iX Asup i= v Q3'

Pi5s up I
then by monotonicity of A,

~xE (( U Q..

[] ael PEJ

Conversely, if

X EO V Q ),

aJ &

then for a E I, there exists /3 J,/3 _ a such that xc QA. But Q is a partition, so

.tthere is only one value of Q that contains x, say Q/3(x)" Thus 3x) > a, for a E 1, and

hence sup I _/3(x), implying that x E Asup P

L To show that 71 is onto, we proceed as follows. Let A = (A Ce a E [0, 1]) be a flou

set of X. By Theorem 1, A is uniquely determined by its characteristic function VA- Let

[ ~ JA.(0, 1] betherangeof VfA, that is, aeJA ifandonlyif

[ {~~x e X " T)X= }= ((PA = O=IA() 09.

Obviously, JA 0. For /3 E JA' define

Li:Q -A \A = a[/31]\ijA(/3 1] = 3),

where AAw = 0. Obviously, Q, 0 for J3 JA. By the definition

of JA' if a, P3 EJA and a- 13, we have Qcc P = 0. Finally, if x X, then

" E (VA = WIA(X)) so that x EQa with =gVA(X)EJA. Thus Q= {Qp,I3 EJA} isa
partition of X. It remains to check that Ti(Q) = A. But
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Aa yj[a,i1]= Vr' (P u
P5 a A J

This last equality follows from the fact that if 3 > a and 1 e JA, then fA ( 03)=0.

To show that 77 is one-to-one, we suppose )) = rI(Q(2 ) = A, where Q and

Q(2) are two partitions of X, with domains P ) and J(2), respectively. From the above

discussion, we see that /1) = /2) =range of VA. Also, for 3 / /1) = /2),

Q (l) =Q( 2 ) 1I, (9).

Remarks. (i) In view of Theorem 2 and the algebraic structure of 7 4V(X), one can

I define logical operations on IP(X) so that the bijection r is an isomorphism.

Specifically, if Q "J c [0, 1] -; 9(X) is a partition of X, then its "negation" is the

partition Q' 1 - J -9 (X) defined by Q' = Ql-.This is justified as follows. Let

A = 71(Q). Then for e3 J Q = (rA= 13). The "complement" of VrA is W=A -A'

The range of 4'A is 1 -J. Thus Qc= (yvA-cx) for XE l-J, that is,
Qa= (WA =  a) o = 01.oW

For i 1, 2,let Q(W : fi) , 9(X) and A(i) q 7r(Q(i)). The "conjunction" of

and V( 2 ) is IA(,) A VI(2 ). Define Q : range(Vf (1) A V'(2)) -1 Y(X) by

Q A = (1 A (1)aA W(2 ). Q is taken to be the "conjunction" of Q and Q(2)

Similarly, the "disjunction" of Q(1) and Q(2) is the partition defined on the range of

(1 2 by (,yAu) 1V 2 = q).(ii) A similar isomorphism can be established between , 4(X) and the class of

nested random sets of X. Specifically, by a nested random set of X, we mean a random

element S, defined on the probability space (Q, , P) with values in Q(X), of the form

S(cb) = AU(o)) , where A = (ACe a E [0, 1]) is a flou set, and U is a random variable,

defined on (2, 14 P), and without loss of generality, uniformly distributed on [0, 1]. For
a fixed U, consider

S,()= (A • A e (X)).

It is easy to check that the map

defined by "r(A) = AU is an isomorphism. For more details on algebraic and probabilistic
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0 bases for fuzzy sets, see Goodman (1990).

[p 7.4 Fuzzy conditionals

As in any logic, the concept of fuzzy entailment (or implication) in fuzzy logic is

[1 2 essential for inference purposes. Consider a conditional rule of tjie form

"If X is a then Y is b",

where a, b are fuzzy subsets of some set 11, say, and X and Y are variables taking

values in Q. In the theory of possibility (Zadeh, 1978), the possibility distribution of X

(resp. Y) is taken to be the membership function Iuta (resp. i) with the interpretation

Iii that

Poss(X = co) = Aa(co), w 2.

IS Thus, a conditional rule of the above form can be viewed as a "fuzzy conditional."

In the past, various approaches to defining conditional possibility distributions have

been proposed. Let f(x, y) denote the joint possibility distribution of (X, Y), and f,

(respectively, f2 ) denote the marginal possibility distribution of X (respectively, Y), where

H f1 (x) = supfAx, y).
y

In Nguyen (1978), the conditional possibility distribution of Y given X is defined by

and in Hisdal (1978) as

fylIx) = { i fi§ >ftY)

LLax, y), 11 if f, w = f(x, y)

Bouchon (1987) proposed two types of conditional forms. Let f: £21 - [0, 1],

g • 02 -4 [0, 1] and T be a continuous t-norm.

(i) (f(x)Ig(y))T = sup(t " [0, 1], T(g(y), t) _fly)) with two special cases. First, for

• •T(x, y) = min [x, y),

VW~x I 9&))T I if f(x) >: g(y)

f(x) if fWx < 0).
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-[1

Ii (1(x) Ig(Y))T = minlf(x)Ig(y), )

. Secon:, for T += na(N)-xyf~)}

1(ii) Let h "[0, 1) -4 IR + be a non-increasing, continuous function with h(O) +0, and

Wi h()= 0. Let Nh(t) = h 1 (h 10) - h(t)), a negation. Then

[(f x= -

[3 'The approach (ii) is clearly a generalization of the use of material implication when

h(x) = 1 - x. For other works on fuzzy implication operators, see Yager (1983), Sembi and

Mamdani (1979), Mattila (1986), Smets (1990).

Goodman and Stein (1989) attempted a definition for fuzzy conditioning, based upon

the fuzzy set analogue of the basic characterization of coinditional events as the solution set
of a Boolean linear equation, that is, (x "x e R, xb = ab). Specifically, if S is a
generalization of Zadeh's classical (min, max, 1 - ()) system over the set of all

membership functions of fuzzy subsets of n (called there a semi-Boolean algebra, being a

complete, bounded distributive DeMorgan lattice) with conjunction and partial order

[ i relation < then, for f, g E S, the conditional form (fig) is given by

(flg) =h : h e S, h*g =f*g.

This led to, for xe 2,

[I { f(x) if f(x) < g(x) ,

[g(x), 11 if f(x) ;> g(x) .

• j Unfortunately, unlike the Boolean counterpart, closure of functionally extended operations

did not hold.

1.1 In this section, we propose a new approach to fuzzy conditioning using random set

representations of fuzzy set membership functions. Let X be a set, and for simplicity, let

the Boolean ring R be 9(X). For a, b e R, the syntax representation of the conditional
"a given b" is the coset (aIb) = a + Rb', while its semantic representation (DeFinetti,
1964; Schay, 1968) is its "generalized" indicator function

p(alb) : X-1 (0, 1, u)
defined by
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e c1 if x E ab
Va b) W = 0 if x Ea'b

where u stands for "undefined."

It is time to say a little more about the symbol u. -In view of Lukasiewicz's

three-valued logic, the logical operations on the truth space (0, 1, u) are defined by

El0= 1, 1=0, ul=u;

0i AoI=o0 0=o0^A.=o, 1^AI= 1, uAI=uAu=u

1' OVO=O, OVI=1V1=uVI=1, Ovu=uVu=u.

For concreteness, u can be taken to be a number in (0, 1), say u = 1/2, so that for x, y e

[0,1,1/2),

x' = I - x, x V y = max(x, y), x A y = min(x, y) .

Consider now the case of fuzzy sets. Our approach to defining fuzzy conditionals is

based upon a relationship between membership functions of fuzzy sets and canonical

random sets which are induced by uniformly distributed random variables. See, for

t example, Goodman and Nguyen (1985). Specifically, let f: X -4 [0, 1], let (92, ,9, P) be

a probability space and U be a random variable defined on it and uniformly distributed

over the unit interval [0, 1]. The random variable U is thought as a device for

randomizing the a-level sets of f. Thus for x E X,

fix) = P(Co: U(o) fx))

- P(U <f(x)) = P(U'I[o1f(x)])

In this way, f is the one-point coverage function of the canonical random set S defined

by

SU(O)) = {x :x X, U(a) f(x)) =f [U((o), 1).

That is, f(x) = P(o: x E S(o)), x E X.

The logical operations among membership furctions can be defined using this

relationship. First, the set complement of u[0[,,f(x)] is u'l[of(x))c , and

P(U_ [0,f(X)]c) = P(X f[U, I])= 1 - P(U<_f(x)) = I -f(x),
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since U is uniformly distributed. Thus, the negation of f is 1 -f. Next, let f, 0
g :X -4 [0, 1], and U, V be their corresponding uniformly distributed random variables,

I both defined on (92, ,f, P). The joint distribution function of U, V is a copula F (or

more precisely a 2-copula, see Schweizer and Sklar, 1983, p. 82-'83).

To define the conjunction of f and g, we look at the set intersection of their random

set representations, namely

(f u[0 f(x)] n vl1o g(x)].
We have

L' P(U1[O,f(x)] i V' 1[O, g(x)]) = P(x E f [U, 1] n g' IV, 11)

[ -= P(U _j(x), V 5 g(x)) = F(f(x).

Thus the conjunction f A g is defined for xe X by (f A g)(x) = F(f(x), g(x)).

fFor disjunction V among membership functions, we look at the set union of their

random set representations, namely

[ u 1[o,f(x) V v'1[0, g(x)].

We have

P(U110,f(x) V [o, g(x)])

- P(Ul[0,f(x]) + P(V'1[o, g(x)])

- P(U'I[0,.Ax)] n V1 [0, g(x)])

= (xEf - [U, 11) + P(x E g'1 V, 11)

= P(x E f 1 [U, 11 o g'1 [V, 1])

U = f(x) + g(x) - F(f(x), g(x))

U,= * (f(x), g(x)),

where F is the dual copula of F. Of course, the logical system above of membership

functions depends upon the copula F.

The procedure above is carried over to the conditional case as follows. The

conditional counterpart of 'f given g," denoted as (fig), is the conditional event

• * ('l[0,f(x)]V1'I[0, g(x)]) in the conditional space X 1 1 Thus, it is natural to define
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(flg)(x) = P(U 1 [of(x)]lv'[o, g(x)])

[i = P(U:f(x)jV5 g(x))

Ffg(x))

when g(x) * 0.

For (fig)(-)" to reduce to 4p alb)(-) when f= Ia' g = b, with a, b being elements

of a field of subsets of X, a third value u (undefined) has to be assigned to (fIg)(x)
-when g(x)= 0.

We consider first a special case in which the copula F is taken to be min, that is

F(x, y) = min[x, y). We use also the symbol A for minimum. Also, in the sequence

Definition. Let f, g X -4 [0, 1]. The semantic part of the fuzzy conditional

(fig) :X- 0, 1] U u),

is defined by

{f(x)Ag(x) when g(x) 0

(flg)(x)= 
u g wx)

[u when g~x) 0 O.

As in the case of ordinary conditionals, the abstract symbol u has to be clarifi, Th" s is

1,.[ because the range of (flg)() involves u, implying that the nature of fuzziness of fig)
depends on u. Of course, one can simply imagine that u is an abstract symbol, and

j i define the logical operations (-)', A, V on [0, 1] v (0, 1). A concrete candidate for u is

the whole unit interval [0, 1]. This choice turns out to be convenient and also consistent

with interval analysis. Taking u as [0, 1], fuzzy conditionals are interval-valued fuzzy

sets.
Before proceeding further, let us specify the (Lukasiewicz) logical operations on the

space [0, 1] u ([0, 11), where real numbers x in [0, 1] are considered as intervals [x, x].

Two intervals [a1 , a2], [b1 , b2] in [0, 1) are equal if and only if a1 =b and a2  b2 .

The logical operations on [0, 1] are

Sx 1 = -x,

x A y = min(x, y),
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x V y = ma(x. y).

As in Interval Analysis (for example, Moore, 1966, 1979; Alefeld and Herzberger, 1983),

logical operations on the set I([0, 1]) of intervals of [0, 1] are set-extension operations, so

that, using the same notation,

[a, b]' = [x' : a!x< b)= U -b, 1 -a] = 1 -[a, b].

Note that [a, b]" = [a, bi. Ln particular

u" = [o,1]" = [, 1 = u,

[a, b] A [c,d]= (xAy :a!_x<5b,c5y _d),

Ii =[aAc,b Ad],

[a, b] V [c, d= [x Vy: a<_x<b,cy<_d)

= [aVc, bVa].

Li Note that is not a true complement (so that the law of excluded middle does not

hold) since, in general,

I. [a, b" A (a, b] # O,

(a, bl' V [a, b] # .

f "However, it is easy to check that DeMorgan's laws do hold, that is,
L

([a, b] A [c, d])' = [a, b]" V [c, a]',

1.(a, b] V [c, a])' [a, b' V c, 41'.

L Moreover, both A and V are commutative and associative. Also, the following

distributive laws hold:

L [a, b] A ([c, d] V [e, J)= ((a, b] A [c, d]) V ([a, b] A[e, fJ),

(a, b] V ([c, d V [e,.j)= ([a ,b] V [c, d) A ((a, b] V (e,.fl).

This last fact follows by the distributivity of A over V on real numbers. Finally, the

order relation on I([0, 1]) is defined by setting [a, b] < [c, d] if and only if

[a, b] = (a, b] A [c, al, which is the same as a < c and b -d. The smallest and greatest

elements of 1([0, 1]) are [0, 0] = 0, [1, 1] = I, respectively.
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The logical operations on [0, 1] v ([0, 1]) are the restrictions of the above operations

on 1([0, 13) to its subset [0, 1] u ([0, 1]). Thus, for example, x e [0, 1], we have

x A [0, .1] = [x, x] A [0,1] = [0, x],

1 V [0, 1) = 1, [0, 1] A [0,1= [0, 1],

F x V (y A 0, 1]) = [X, x V y],.

In particular, these restrictions to (0, 1, u), with u = [0, 1], form a Lukasiewicz

"~ three-valued logic.
In the sequel, u = [0, 1]. For f, g :X - [0, 1], define

(L()when g(x) &0

(~) x N
0 0 when g(x) =0'

and let 0(g;O) denote the indicator function of the set (x : g(x) 0). We can write

(flg)(x) = A X) V Au).

= o (g )(x) (l(g=o)(X)

Note that o can be replaced by (fAg)l(gVI= in the above equality. Also,

multiplication on I([0, 1]) is the set-extension operation of on real numbers, so

that, for x e [0, 1],

Sx-u=x.[O, 1] = (xy:yE [0, 1]} = [0,x] = x A [0, 1] x A u.

v] Thus, it is convenient to use the form

(fig) = F V Gu = [F, F V G]

I; for membership functions of fuzzy conditionals, where

SF=fg--')o1(g#O)' G = O).

Note that G takes only values in (0, 1), and if G(x) = 1, then F(x) =0.

Theorem 1. Let fl, g1, f 2, g2 
'  (X). Then (f0g 1) = (f21g 2) if and only ifthere is a

positive function K on X such that g, = Kg2 and A g, = K(f2 A g2)"
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Proof. Fir sufficiency, let K be a positive function on X such that g, = Kg2 and

SfI A g = K(f2 A g2 ). From g, = Kg2 and K > 0, we see that g= 0 if and only if

g2 = 0, so that

(01 g1) = q2 g2 ) on (g,= 0) =(g 2 =0).

fl Next, on (gl 0) =Q2 o6,,

[ f lAgl

K(x )(f2 (x) Ag2 (x))

f g2

v[] = (f21g2)(x) "

I For necessity, suppose that VI g) = (f2 Ig2). Define

=on ( 2 o 0) =(g 6 0).

g2(xxOf
[] "c >0 on g2=0) (g =0)

We then have gI =Kg2 on X and

f1 Agj =_f2A 2 on (g 0) =(g2  0)

g1  92
implies that

f}: A g =92 (f2 A g2 ) = K(f2 A g2) .

SOn (g1 =0) = (2 =0), we always have

g1 A g, = K(f2 A g2 ).

As in the case of fuzzy sets, let us specify the syntax representation of fuzzy sets, let us

specify the syntax representation of fuzzy conditionals. First, let's look again at conditional

events. For a, b E P(X), we have seen in Chapter 3 that (a Ib) is equal to the interval

[ab, b -i a] in O(X), where b -4 a = b' V a (material implication). Thus, (aIb) is
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equivalent to (ab, b -a) or to (ab, b -4 a, X). A= (ab, b -4a, X) can be viewed as a
finite flou set with characteristic function of the form

(t)(x)= 0 if x e a'b
{i t if x eb"

for some t e [0, 1], where in flou set form,

A(t) = (Aa ae [0, 1)

I. with Ao = X,A a =avb' for O< a:tand Aa= ab for t<a:<l.
For each t e [0, 1], define qt(alb): X - (0, 1, t) by

II 1 if x eab

q7(a I b)(x)={0 if xea'b
if x e

then, since u = [0, 1], we have, for x E X,

q~aIb)(x) = ipt(aIb)(x) "t e [0, 1]).

IThat is, the generalized indicator function cp(a I b) is precisely the collection of real-valued
functions pt(a, b), t r [0, 1].

The situation is similar in the general case. Let f, g e 5(X). Define, (fig)t X -4 [0,

1] for each t E[0, 1] by

S(fg(x) =wen g(x) 0

{ when g(x) =0 .

Ls Then (fig) = {(fIg)t and t e [0, 1]). Let A(t) be the flou set associated with (flg)r
(tU Then the syntax representation of (fig) is the family of flou sets {A(t) : t [0, 1]).

We turn now to logical operators among fuzzy conditionals. Since fuzzy conditionals
are interval-valued fuzzy sets, operations among them are defined pointwise, that is, by
logical operations on I([0, 1]). First,

1 -fag (x) on (g 0)

(f 1g)] [0o (f Ig)(X) =)
1 (- [0, 11=[0, 11 on (g 0 )
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Now,

11f(x)Ag(x) = xA(x) ((g(x)tf(x))VO)Ag(x){g(x) g(x) 9Wx

Thus (fig)' = ((g -J) V Og). The situation for A and V is not that simple, in the sense
that compound fuzzy conditionals are arbitrary interval-valued fuzzy sets. Using interval

representations,

(fl g1 ) A (f2 1g2 ) = [F1,F1 V G1A [F2,F2 V G21
=[F1 A F2, (F1 V G1)A (F2 VG2))

= (F1 A F2) V (((F1 V GI) A (F2 V 2))u),

( (fg1) V f2 Ig2) = 2F1 yE2 , (F1 V G1) V (F2 V G2)]

= (F1 V F2 ) V (((F1 V G1 ) V (F2 V G2))u).

Thus, compound fuzzy conditionals are of the form f V gu = [f,f V g] with

f, g :X -4 [0, 1]. Simple fuzzy conditionals are of very special form, namely g takes only

values in (0, 1), and when g = 1, we have f = 0. However,

[I Theorem2. If fg :X-[0, 1), then fVgu= a-(elh) V3 where a,3, e,h:X-4 [0, 1].

Proof. Let
Sa(x) = g(x) V l(g=O)(X) .

L "Then

= a(L (g=) v 1 u))

a(L i (g=o) v 1 (g o)U) v P 1g u -(g#o)

L=a(LlI1g=)) Vf.1 ;4).
I.

Remark.

An alternative approach to defining logical operations among fuzzy conditionals is this.

Instead of using arithmetic of intervals, we will explore the connection between fuzzy sets
and random sets. Let fi, gi : X -; [0, 1), i = 1, 2 with corresponding uniform random

variables and Vi, respectively, all defined on a probability space (2, -, P). Let F

be the joint distribution function of (U1 , V1, U2 , V2), that is F is a 4-copula. Let * be



Fuzzy conditionals 229

190- aibinary operator on a ,C for example, conjunction or disjunction. The corresponding
operator among fuzzy conditionals is determined by

S(Oj lgl)*(f'2 1 g2))(x) --P((a b)*(c d)

where

. a [U[O, fl(x)1, b = V'[O, gl(x)],

1; = U [, f2 (x)], d =V 1[O, 92(x)]'

Now (alb)*(c)=(alM, say, so that

((fl1Igl)*(f2 ig2))(x ) = P(a I ) =  (P)

in which P(ap) and P(P) can be computed in terms of F, the 's, gjs, and x. If we letp P(a) = h(x), P(P = 1(x), then for x e X,

((f1 Igl)*(f2 g2 ))(x) = (hlg)(x).

To illustrate this approach, consider negation and conjunction in the case where F is

nun. The situation for negation is simple, involving only a unary operator. Let

f, g : X -4 [0, 1] with corresponding U, V. Let a = Ul [O,f(x)], b = VI1[o, g(x)] for an

I arbitrary x e X. Then (aIb)' = (a' Ib) and P((alb)') = P(a' I b) = I - P(aIb), so that
(fig)' =1-(fig).

For conjunction with F = min, using the same notation in the procedure described

above, we have

V (alb)(cld) = (abja'b V c'd V bd),

and

-I P abcd = m f(x), gl(x),f 2(x), 92(x))
P(a'b V c'd V bd) = P(a'b V c'd V abcd)

= P(a'b V c'd) + P(abcd),

P(a'b V c'd) = P(a'b) + P(c'd) - P(a'bc'd),

P(a'b) = P(b) - P(ab)

= gl(x) - minVf(x), gi(x)),

P(c'd) = g2(x)- min(f 2 (x), g2(x)},
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P(a'bc'd) =P(bd(a V c)')

=P(bd) -P(abd Vcbd)

i = P(bd) - (abd) - P(cbd) + P(abcd)

= min~g1(x), g2 (x)) - minff1(x), g(), 92 (x)) - min~g1(x),f 2 (x), g2(x)) + P(abcd).

[ Thus,

[1 U P(a'b Vc'd Vbd) =g,(x) -min f1 (x),g1()1 +g92(x) -minff2(x),g92 (x))
- min~gl(x), g2 (x)) + minfx), g1(x), g2 (x) + min~gj(x),f 2 (x), g2(x)).

Therefore,

pf where (f1 j1 ) A (f2 g2)) (x) - (hlt(x),

h(x) = minffl(x), gi(x),f 2 (x), g2 (x)} ,

r1(x) = gl(x) - mintf (x), gl(x)} + g2(x) - minff 2 (x), g2(x)}

- min g,(x), g2 (x)) + minff1 (x), g1(x), g2 (x)) + min{gl(x),f 2 (x), g2(x)}.

1.. 7.5 Probability qualification

If we view fuzzy conditionals as uncertain rules in expert systems, then, according to

fuzzy logic (Zadeh, 1988), there are three possible modes of qualification of these rules,

truth-qualification, probability-qualification, and possibility-qualification. In this section,

we address only the numerical aspect of probability qualification of fuzzy conditionals; we

lay down the mathematical framework for semantic evaluations of fuzzy conditionals in

E Probability Logic. Other modes of qualification as well as fuzzy probabilities are not

treated here.

Let (X, R) be a measurable space. At the semantic level, following Zadeh (1968), a

fuzzy event is defined to be a measurable map from X to [0, 1] (where [0, 1] is

regarded as a measurable space with its induced Borel a-field). A probability measure P

. on (X, R) is viewed as a model, and 1l lip denotes the semantic evaluation map in the

model P. Thus, if f is a fuzzy event, then , as proposed by Zadeh (1968), Hip is

defined as follows. Let be a random variable with values in X, having P as its

probability law.
,!
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=Vl Jf( x)dP(x).

1 .Next, we look at the case of ordinary conditional events. For a, b e R, the syntax part

(a I b) was derived (Chapter 2) in a compatible manner with conditional probability. That

is, if P is d probability on R, then P((a b)) = P(ab)/P(b), when P(b) > 0, is

well-defined. Thus, the probability evaluation of its "generalized" indicator functiorn (or its

semantic part) p(a b) is taken to be P(a I b), that is,

i Iip(alb)Iip = P(alb).

This evaluation of q(a b) with respect to a model P is sometimes referred to as a third

value for (p(a I b). See Chapter 5, also Coletti et al., 1990. Now, with the notation of

SSection 7.4,

p(aIb) = (qp(aIb) : t [0,1]),

and Epq(a b)( ) = P(ab) + tP(b'). It is easy to check that P(a b) is the fixed point of

* the map

t 0 [, 1] -4 Ep(p(aIb)().

This observation suggests an extension of Zadeh's concept of probabilities of fuzzy events
(Zadeh, 1968) to the case of probabilities of fuzzy conditional events. Specifically, let f, g

be two fuzzy events. From Section 7.4, we have

(fig) = (fIg)t : t [0, 1]).

Define II(fig)llp to be the fixed point of the map t -, Ep(flg)t( ). Then

Ep(fIg)t( ) = Ep((fIg)t() Ig(4) > O)P(g( ) > 0)

+ EpC(flg)t()Jg( ) = o)'(g( ) = 0)

Thus the fixed point is

Ep4. )g( > 0) ,

* and

"I(flg)llp = Ep{f-()lg( ) > 0).
-J9
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I;

L. Obviously, this evaluation generalizes those in the two previous special cases. Since

Sg) 0 (g>0) V(g)

(f ig) takes values in [0, 1] on Q > 0) (on (g = 0), (fjg) = u), namely L-. This

observation is used to define evaluation of compound fuzzy conditionals as follows.
A compound fuzzy conditional is of the form f V gu where f, g : X -4 [0, 1]. Since

17 fVgu = [ffV g we see that fV gu takes values in [0, 1] only on (g<), that is, x (g

<.) if and. only if (f V gu)(x) = f(x) e [0, 1] . Thus, by analogy with the simple fuzzy

conditionals case, we define

IVV gullp = Epq(fIg -).

This evaluation is well-defined, since if. f V gu = h V ku then (ff V g] = [h, h V k]. Thus

h, f= h, fVg=hVk, and (<f)= (k5h). Hence Ep(fIgf)=Ep(hlk<_h).

7.6 Iterated fuzzy conditionals

The topic of iterated conditioning will be treated in Section 8.1 of Chapter 8, from a

syntactic viewpoint. Here, to be complete, we discuss this concept in the setting of fuzzy

sets, but from a semantic viewpoint, that is, using generalized indicator functions of

conditional objects rather than the objects themselves. Let R be a field of subsets of a set

1; X. For a, b E R, the generalized indicator function of (a I b) is defined as

. (p(alb) :X -4 1([0, 1]),

where ([0, 1]) denotes the set of all closed sub-intervals of [0, 1], equipped with

1~ arithmetic of intervals, and

1 for x E ab

q J I b) (x) = / 0 for x e a'b
u= [0, 1], for X E V

q~(a]b) is a special fuzzy conditional, since q((a I b) = (1a'b ) = 'a A lb =ab on b

and is u on b'. Also, if

I for xe ab

pt,(a Ib) = 0 for x r a'b

t for xEb' 0
then

qp(aIb) = (pt(aIb) : t E [0, 1]).
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i. Each (pt(a b) can be viewed as an element in rp(a b). Observe that
1 t (aIb).I = 1a . b, for t e [0, 1]. Thus, as a natural approximation, we can view

.q(ajb) as

(f :X 4 [0, 1] :f.lb = lalb}.

1: In a similar way, for f, g X -4 [0, 1] one can approximate a fuzzy conditional (fj g) as

[h : X-4 [0, 1] : h g =fg}.

The above heuristic considerations lead to an approximate form of iterated fuzzy

conditionals. For fi, gi : X -4[0, 1], i = 1, 2, define

V((fl 1g1) 1(f2192)) = L) I (fig) : (fIg)(f21g2) = (f1g1)(f2 1g2)},II f~g
where operations among fuzzy conditionals are those in I([0, 1]). Note that by a union of

the form v (fig)), we mean the union of set (fig)(x) which are either (t), for some
f,g

t E [0, 1], or [0, 1], for each x e X. In other words, V is a map from X to 3-[0, 1]. The

main result of this section is the proof of the fact that V is an operator on the space of

fuzzy conditionals.

P. For this purpose, we proceed as follows. Consider the equation

v (flg)(f21g2) = (f]g11)(f2 g2) (1)

Let h on Qg> 0), we write

(fig) = hl(g>0) V U1(g=0 ).

IfijAgi
Similarly, let h - on (gi > 0), i = 1, 2. The equation (1) is rewritten as

L (hl (g>O) V Ul(g=0))(h21(g2 >0) V Ul(g2 =0))

S(h 1 (gl>O) V U1(gi=O))(h 21 (92>O) V Ul(92=O)) (2)

LAfter multiplying out terms, we get

a V f3u = v u, (3)

* " where
.5$
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(I a= hi

.3= hi(g>o)l(g2 =O) V h2
1(g2 >O)l(g=O) V _(g=O)!(92=0),

r=hll(g>o)h2g>)

hilg>)I V hi 1 V
=h ( >12=) (g2 >O) (g1=O) V 1(g1 =O)1(g2=O)

Since (3) is precisely

[a, afi V [y,ryV~

-we have

a=y.and aVf3=yVg. (4)

"I -1= To solve (4), we consider the partition of X consisting of (g2 = 0), (g2 > 0, h2 > 0) and

(g02 > O, h2 =0).L On (g2 = 0), (4) becomes

hl V 1 =0) = h1 11 (g>0) V 1(g1=) (5)

Thus,

L (fig) = h1(g>O) V Ui(g=0)

= (h 1
1 >0 ) V I g=O))((1.hl)gl>o) V Ul((l1h1)g)O) (6)

since on (g > 0), (5) yields

h = h11(g,> 0 ) V (g]=0),

1 and on (g 0),

1 = hl1 1>0 ) V l(g_=0).

This is equivalent to h1 = 1 or g, = 0, that is, to

(I1- h])(g 1 ) = 0.

On (92 > 0, h2 > 0), we have from (4) that

hi(g>0) = h1 (gj>0)'
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* and

hil(g>O1) 11(1>) V (1'=0). (7)

From (7) we see that (g=0)=( 1 = 0). Indeed, if g,(x)=O, then g(x)=O.
' Conversely, if g(x) = 0, then either gl(x) = 0 or hi(x) = 0. But the case where

g(x) > O and h1 (x) = 0 is impossible in view of (7).
Next, on (g > 0), we have h = h1 . Thus

1:9? ~(fig) = h1(2>0) V Ul(g=0) =h1(2>0) V u1 (10)~ Cf g1g).

On > 0) n (h2 = 0), (4) supplies no constraint on f and g, so that (fig) is a
solution. But for x E X,

L) ((fjg)(x)) = (0, 11 =U.

Thus, we have

Theorem 1. For f, gi X 4[0, 1], i =1, 2,

€i: ":7-1Ag1 "
V((fl 19) 1 f2192)) = 1 0t:!- (c-:0)i1(D#0)•

". where

1.. C = glh2 g2 V g1 (1 - hl)!(g2 = 0),

v ," D = g1h2 gj V g1(1 - hl)(h2 V 2=0))

and

h fiAgi i 1, 2.
hi= -" z=i2

L
As an example, consider fl= a' f 2 = c' ?l = 1b' g2 = 'd We have

flAg1 ,'0 t'-l o ° ab '

(C # 0) = bcd V b(ab)'d',

(D O) =bcd v b(ab)'(cd V d') = b(a'd' V cd),
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so -that

V(q(a b) q(c d)) = (labcd 1 b(a'd'vca))= q)abcdlb(a'd' V cd))

= p(abjb(a'd' V cd)).

I 'This should be compared with Theorem 3 of Section 8.1 of Chapter 8.

1]

[I

I"

LI

Li
LI
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p
CHAPTER 8

I TITERATED CONDTONING AND MISCEL IANEOUS ISSUES

p This last chapter is concerned with some topics related to measure-free conditioning.

In Section 8.1, an investigation of iterated conditioning is carried out. In Section 8.2,

some aspects of non-monotonic logic on conditionals are discussed. In Section 8.3, we

F) generalize some of the results concerning operations on cosets of Booleans rings to
commutative von Neumann regular rings. Finally, in Section 8.4, we close by suggesting

[I open problems for future research.

8.1 Iterated conditioning

In Section 7.6, we have touched upon the concept of conditionals of conditionals in

the fuzzy case. In this section, we return to the Boolean case and formulate the basic

concepts of higher-order conditioning. This investigation of iterated conditioning is a first

1.. attempt. We hope that this will trigger further work in this area.

By Lewis' Triviality Result (Chapter 1), there is no binary operation 0 on a

Boolean ring that is compatible with conditional probabilities. That is, there is no binary

operation 0 on R such that for all a, b E R, and all probability measures P on R such

that P(b) 0, the equation

L P(a 0 b) = P(a Ib) = P(ab)IP(b).

Ui holds. Thus, to define conditional events compatible with probabilites, one is forced to go

outside R, and we enlarged R to R IR for that purpose. Now, having the conditional

space RIR, we wish to consider conditionals on it. But., again, RIR will not accomodate
conditionals between its elements that are compatible with probability. More precisely,

2 the situation is this.

Theorem 1. (The Triviality Result for R IR) Let R be a Boolean algebra with at least

sixteen elements. Then there does not exist a binary operation 0 on R jR such that

P((alb) 0 (cld)) = P((alb)(cld))
P(cjd)

for all a, b, c, d e R and for all probability measures P on R such that
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P(b) 0 P(c d).

Proof. If R is not atomic, then there exist four mutually disjoint non-zero elements

of R. Just take a e R where a has no atom, and let a > b > c > d, all non-zero. Then

U" d, cd', bc', and ab' are four such elements of R. If R is atomic, let a be an atom of

R, b be an atom of a', c be an atom of (a V b)', and d be an atom of (a V b V c)'.

I This is possible else R has fewer than sixteen elements. Thus, in any case, R has four

mutually disjoint non-zero elements r, s, t, and u. Now, by the Stone Representation

Theorem, R is a subalgebra of Q(Q) for some set Q, and so viewing R, let v, w, x,

and y be elements of r, s, t, and u respectively. Define a probability measure P on

-(Q via

P(v) = 0.1, P(w) = P(x) = P(y) = 03.

Then, P is a probability measure on R. Let

a =r V s,

b = rV s V t,

c= r Vtr,
d= rVsVtVu.

[I A solution

(xly) = (alb) 0 (cla)
I so that

.
P(xly) =P((alb))(cld))

L P(c Id)

Syields

P(xly) -P(ac Ia'bvc'dvbd)
P(c d)
P(ac)P(d)

U :"P(a'bVc'dVbd)P(c)
I. - (0.1)(1)

P(tV(rVt)V(rVsV))(0.6)
1.,

0.1 P(x)
(0.7)(0.6) P(y)

taking x y. But there is not such a pair x, y : R. u



Iterated conditioning 239

I.

There are some special cases for which solutions exist.

(i) For b = d = 1, we have (xly) = (atc) e RIR.

(ii) More generally, for b = d, we have

P[(a b)(c I b)]/P(c I b) = P(ac I b)/P(c b)= P(abc)/P(bc)= P(a bc),
A

sothatasolution (x1Y) is (albc).

L"3.[i (iii) Geneializing in a different direction, letting only d = 1, we have

-. P[(aIb)cIP(c) = P(abcIb V c')IP(c) = P(ac)/P(c)

if c 5 b, so that when c5 -b, ((alb)Ic) = (a Ic). In particular, ((alb)Ib) = (aib).

I I The interpretation of all the above is plausible from a rule deduction viewpoint.

(See Dubois and Prade, 1990, and also Calabrese, 1987). For iterated conditionals of
Ii conditionals with the same antecedent (that is, b = d), see also Pfanzagl (1971, p. 200). In

this case, for fixed b e R, iterated conditionals of the form ((a Ib) I (c I b)) are nothing
more than conditionals on the (quotient) Boolean ring R IRb'. The operations on the ring
R/Rb' are

Ii (alb) + (cib) = (a + cjb),

l (alb).(clb) = (acjb),

(alb)' = (a'Ib).
[ Thus

((alb)I(clb)) - (aib) (R/Rb')(clb)' e ((R/Rb')(R/Rb')(c'Ib)).

We are going to show that ((alb)I(clb)) can be identified with (albc) E RIR(bc)'. For
this purpose, consider the map

U.! defined by

?.(x + Rb') = x + R(bc)'.

First, this map is well-defined. Indeed, changing x to x + rb', the image under 2, is9 x + rb' + R(bc)'. But rb" _b" V c" so that rb' e R(bc)', that is, rb' + R(bc)' =
R(bc)'. It is obvious that I is a ring homomorphism and is onto. It remains to verify

! that the kernel of X is precisely the principal ideal (RIRb')(c'b) of RIRb'. We have
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X((x + Rb')(c' + Rb')) = -L(xc' + Rb') xc' + R(bc)' R(bc)

(since xc' < (bc)'), which is the zero in R/R(bc)'. Thus, ((RRb')/(R/Rb')(c' Ib)) is

isomorphic to RIR(bc)'. 3

However, the identification of ((a I b) I (c I b)) with (al bc) does nothing toward
getting a general definition of conditionals for conditionals. Of course, one can argue

_9 from some logical viewpoint, and then define, in an ad-hoc or plausible manner, an

iterated conditional (a I b) I (c I d) in such a way that the above intuitive (and compatible)

special cases hold.

Our approach here is this. We cannot proceed in exactly the same manner as we did

to get R IR from R. The space R IR consists of all cosets of all principal ideals of R.

I ~ The space R IR is not even a ring, and so we cannot make a totally analogous
construction. However, in R, a coset a + Rb' = (a + rW : r e R) is-the set of all

[solutions x to the equation xb = ab. In R IR, we can carry out the construction

analogous to that. So we are led to the following definition,

Definition 1. I-or (alb), (c Id) e RIR, the iterated conditional ((alb)I(cld)) is the set

II {(xly) : (xly)(cld) = (alb)(cld)).

The collection of these sets is denoted (R R) I(R IR) and is called the space of iterated

conditionals.

Now ((alb)I(cld)) is not empty since it contains (aIb) as well as ((alb)(cld)).
In the case of ordinary events, the set (x : xb = ab) is the interval [ab, a V b']. That is,

1 solutions x to the equation xb = ab are exactly those x such that ab <x < a V b'. So

a conditional event is also an interval in R. This was discussed in Chapter 2. One might

[1 expect that ((a I b) (c Id)) is an interval in R IR under the partial order we defined by
(alb) (cld) if (alb) = (alb)(cld). In fact, RIR is a pseudo-complemented lattice with

L. respect to this order, as expounded upon in Chapter 4. Now ((alb) I(cId)) does have a

smallest element, namely (aI b)(c Id). Furthermore, this is the counterpart to the smallest

element ab in the interval [ab, b' V a]. However, various counterparts to b' V a =

b -, a (material implication), such as (a I b) V (c I d)' and Lukasiewicz's implication are

not solutions to (xly)(cld) = (alb)(cld), that is, are not in ((alb)I(cld)). However, RIR

has a property that we have not yet exploited. It is relatively pseudo-complemented. It

turns out that b -. a is a relative pseudo-complement in R of b with respect to a

since x b' v a if and only if xb a. (See the definition below.) So there is another
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counterpart in R IR to b' V a, and it is that element that is a maximum solution to
(xjy)(cld)=(alb)(cld) and guarantees that ((alb)l(cld)) is indeed an interval in RJR.

Definition 2. A lattice L is relatively pseudo-complemented if for every a, b e L, there
is an element a'b e L with the property that x:5 a'b if and only if a A x < b.

Clearly there is only one such ab, and it is called the pseudo-complement of a

relative to b. The element a*b satisfies a A a'b < b, and is the supremum of the set of
all such elements. The relative pseudo-complement of a with respect to 0 is called the
pseudo-complement of a, and that notion played an important role in Chapter 4.

The relevance of relative pseudo-complements to our problem is this. Suppose that
R IR is relatively pseudo-complemented. Then applying that property to the pair of
elements (cld) and (alb)(cld),RIR has an element eVf=(cld)*((alb)(cld)) such that
(el)(cld) < (alb)(cld) and such that (xly) : (elV) if and only if (xly)(cld)

:. (aIb)(cId). But there are solutions to (xly)(c1d) = (alb)(cld). Hence the

pseudo-complement (e[ of (c d) relative to (alb)(cld) satisfies (e[/(cId)=
(alb)(cld). Thusif

(xly)(cld) = (alb)(ld)

'I then
(alb)(cld) (xly) (ejh.

Conversely, 

if

(a b)(c ld) -- (xIy) (elf),

then

I" (alb)(cld)(cl d)= (alb)(cld) (xly)(cld) -< (e f(cl =d) (ab)(cld),

and soIi
1 (xly)(cld) = (alb)(cld).

Therefore

(alb)I(cld) = ((alb)(cld), (cld)*((alb)(cl d)].

Thus we need two things. We need that R IR is relatively pseudo-complemented, and we

need a formula for the relative pseudo-complement (c Id)*((a I b)(c I d)).
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Theorem 2. R IR is relatively pseudo-complemented, and the pseudo-complement of

[1 (aIb) relative to (cjd) is

U (alb)*(cld) = (cd V a'b V b'd' Id V a'b V b'd')
Proof. Let e = cd V a'b V b'd', and f = d V a'b V b'd'. We need that (a b)(x y)

II <(cld) ifandonlyif (xly) <(eLf). Now (alb)(xjy) 5(cld) ifandonlyf

(axIa'b V xy V by) (cld)
~if and only if

U ax(a'b Vey V by) < cd

and

c'd (ax)'(a'b V x'y V by),

if and only if

[abxy < cd

c'd (a' Vx')(a'b Vx'y V by) =a'b Vx'y.

So we have that (alb)(xly) :< (cld) if and only if

abxy5 <cd and c'd: <a'b V xy.

Conversely, (x ly) _ (e [i) if and only if

xy < ef = (cd V a'b V b'd')(d V a'b V b'd')

t'= cd V a'b V b'd',

and

x'y e'f = (cd V a'b V b'd')'(d V a'b V b'd)

= (c' V d')(a V b')(b V d)(d V a'b V b'd)

= (c' V d')(a V b')(d V a'b)

= (c' V d')(ad V b'd)
I.m

= (ac'd V b'c'd)

= c'd(a V b')

Thus we have (xly) < (elf) if and only if
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xy:Scd Va'b Vb~d' and x'y :c'd(a Vb').

We need

xy:5cd Va'b Vb'd' and x'y -c'd(a Vb')

1.1if and only
abxy: cd and c'd:5a'b Vx'y.

112 But x'y : c'd(a V b') implies that

[1 b V x'y 2 a'b V c'd(a VbY) c'd,

p and c'd:5a'b V Yy implies that

c'd(a Vyb') :5(a'b V xy)(a VbV) = y(a Vb'):5x'y.

From xy:5cd V ab V b'd' we get

Ii abxy ab(cd V a'b V b'd') = abcd.

Finally, abxygcd and c'd ab Vx'y imply

xy 9(ab)'cd

h and
c'd(a V b'):5 (a'b Vx'y)(a V b')

-Yy(a vb') 5x'y:5x1 v y',

1! from which we get
x' V y' 2-ab(c' V d')

and
x' V y' :c'd(a V b').

Thus
x' V y' :ab(c' v d') vc'd(a vb').

But .xy cd V a'b V b'd' is equivalent to

x' V y' :(c' Vd')(a V b)(b Vd)

-ab(c' V d') V c'd(a V b').
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The relative pseudo-complement (alb)*(cld) can be written in an apparently

simpler form, namely

(alb)'(cld) = (cdV a'b V b'd' Ia' V b' V d).

I One should note the special case (cld) = (011). We have -

(alb)*(O11) = (ajb)* = (a'bl),

the pseudo-complement in R IR of (aIb).
{j The relative pseudo-complement of (a b) with respect to (c d) is a form of an

"implication operator"I *i
(alb) * (cld) = (alb)*(cld) = (cd V a'b V b'd" la' V b V d)

on R IR extending material implication on R. It can be viewed as the counterpart of

material implication in R IR. The truth table of (a I b) * (c Id) follows. Let x = (a b)

[ and y = (cl d).

x\y oil 111 010
Oil Oil Oil oil
ill ill ill ill
010 ill Oil ill

. Corollary 1. ((alb)I(c d)) [(alb)I(cld), (cd)*((alb)(cld))]

=[(aIb)I(cld), (abcd V c'd V ad" V b'd' Ib V c'd V ad' V b'd')].

1.; Proof. We need only to show that

(c I d((ab)(cld)) = (abcd V c'd V ad' V b'd' ib V c'd V ad' V b'd').

Let e = a'b V c'd V bd. By the formula in Theorem 2,
Li

(cld)*((alb)(cld)) = (cId)*(acla'b V c'd V bd)

= (ace V c'd V d'e'I Ie V c'd V d'e')

= (abcd V c'd V ad' V b'd'Ia'b v c'd v bd v ad'V b'd')

= (abcd V c'd V ad' V b'd' Ib V c'd V ad' V b'd').

a
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9O The right hand endpoint

(ClI)((ab)(cld)) (abcd V c'd V ad' V b'd' b V c'd V ad' V b'd')

can also be written in the somewhat simpler form

(ab V c'dV ad' V b'd'b V c' V d').-

Corollary 1 gives a way to identify RIR with a subset of (RIR)I(RIR). An easy
calculation shows that ((a Ib) I(1l)) = [(a I b), (a I b)]. Thus the map
(atlb) -4 ((a [b) I(I 11)) is one-to-one.

Corollary-2. ((alb)l(c I)) = (RIR)((cId)*((alb)(cla))) V (ab)(cI d).

!,Lt.! Proof. An element (xjy) in the interval [(alb)l(cla), (cld)*((alb)(cld))] is

(xly)((cid)*((alb)(cld))) V (aib)(cld),

which is in

(R IR)((cld)*((alb)(cl))) V (alb)(cld).

V " The converse is equally clear.

Now ((alb)I(c Id)) is an interval in RIR, and it would be nice to have simple

criteria for the equality ((a I b) I (c Id)) = ((e (g I h)). Two conditional events (a I b) and

(c Id)) are equal if and only if ab = cd and c = d. The analogous condition here is that

. (alb)(cld) = (e j)(gIh) and (cld) = (glh). This does not seem to be the case, however,

and the best we can do at the moment is to say that (alb)(cld) = (elf)(gIh), and

(cld)'((alb)(cld)) = (gjh)*((eWt)(gjh)), that is, that the end points be the same. For

example, there does not seem to be a way to recover (cid) from (alb)(cld) and

(cjd)'((alb)(c d)). This precludes making the definition!.:
P((a I b) I Cc I d)) = P((a I b)(c I d))IP(c I d)

since (cl d) is not available. However, in the conditional case,

P(a b) = P(ab)/P(b) = P(ab)I(1 + P(ab) - P(a V b')).

This last expression affords a way to define P on (RIR)I(RIR), namely by the equation

P((a I b) I (c I d)) = P((a I b)(c I d))I(1 -P(a I b)(c Id) + P((c I d)'((a I b)(c Id)))).
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F Furthermore,
P((a Ib)l(1 1)) = (( eC b)(1 1))/(1 -. P((alb)(1 1~)) + Pe(1 lO'(alb)(1l1))))

=P(ab)(1 -P(alb) + P(a b))= P(alb),

and this definition extends the definition of P on RJR, viewing RIR as embedded in

(RIR)I(RIR) by (alb)-,((alb)I(11)).
An element ((aJb)J(cjd)) of (RIR)I(RIR) contains some special elements besides

its endpoints (alb)(cid) and (cld)((alb)(cld)). It is a subset of RIR, and so consists

of a set of subsets of R. As the latter, its point set union can be taken, yielding a subset

of R. It is rather remarkable that doing so yields a coset, that is, an element of R IR, and

moreover that coset is in (at b) ] (cjd). We proceed now to verify all this.

S1[ , Let (cld)'(aib)(clcd) = (al1). Since (alb)(cld) = (acla'b V c'd V ba), we have

Sta = abcd V 7

P= (a'b V c'd V bd) Vy

where

7= (a'b V c'd V bd)'d' V c'd

= (ab V b')d' v c'd.

We also have

ii ((alb)I(cld)) = (RIR)y V (alb)(cld).

Indeed,

1.. (alp) = (alb)'(cld) V y.
Thus,

((alb)I(cld)) = (RIR)((alb)(cld) V 1) V (alb)(cld)

= (RIR)(alb)(cld) V (RIR)yV (alb)(cld)

fj= (RIR)rV (alb)(cld).

The point of the equality ((alb)I(cld)) = (RIR)yV (aib)(cld) is that there is a special

element ye R such that

(R IR)y V (alb)(cld) = (RIR)(cld)*((alb)(cld)) V (alb)(clId).

S'Of course we are identifying y with (yj 1). Now, for any set of subsets S of R, let
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VI

u(S) denote the union of all the sets in S. Noting that

u((RIR)(xl)) =u{(ajb)(xl) : (alb) e RIR)

V= =U((a + Rb')x + RO) : (alb) e RIR)

= u((a +Rb')x: (alb) e RIR)

Sand that fortwo sets S and T, KS V T)= (S) V M, makes the proof of the following

theorem transparent.

lTheorem3. For a,b,c,dER,

' u[(alb)I(cla)] = (ablb(a'd' V ca)) E ((alb)I(cld)).

Proof. We have

U[(alb)i(cla)] = u[(RIR)r'V (aIb)(cIa)]

= u(RIR)yV (aIb)(cId)

=RVyv(alb)(cld)
= (OlY) V (alb)(cla)

= (abcdlabcd V y'(a'b V c'd V bd))

= (abcdl b(a'd' V cd)

= (ablb(a'd' V ca)).

! To see that (ab b(a'd' V cd))e ((a lb) I (c Id)), simply verify that
I..

(abIb(a'd° V c))(cIa) = (aIb)(cId). 1

tJ One may view u as a binary operation on R IR, with

U((aIb), (cla)) = (ablb(a'd' V ca)).

* Now Calabrese (1987) has defined a binary "conditioning" operation on R IR which is his
candidate for iterated conditioning. His operation is given by

(alb)o(cld) = (ablb(d' V c)) = (ablb(d -4 c)).

As a simple check shows, it is not true that
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((alb)(cld))o(cjd) = (alb)o(cld),

while it is the case that

((alb)(cla)I(c d)) = ((a b)(c ld)),

I I and hence that

.t(a bc la) (c a) ) = tu<(a I b) I (c I d)).

However, when (a b) < (c Ia),

L 0[(alb)I(cld)] = (ablb(a'd' V ca))

Ii=(ablIb(d' V c)) = (ablIb(d -4 c)).

Therefore, the binary operations u and Calabrese's "conditioning" operator on R IR

Ii agreeonpairs ((alb),(cld)) with (alb) 5(cla).
If b=d=1, then u(alc)=(alc),so u isonto. If b=d, then

11 u[(alb)I(clb)J = (abjbc) = (albc) .

l If d=1 and b= cthen

u[(alb)lb] = (abjb) = (alb).

Thus u produces "compatible" solutions, at least in the special cases considered at

the beginning of this section. It is obvious that u preserves logical operations. Moreover,

the restrction of u: CRIR)1(RIR) -.RIR to ((alb)I(cld) a, bE R) is an isomorphism
for each pair c, d c R. Also the restriction to [(alb)I(cjb) : a, c r R) is an

isomorphism for tach b e R, To prove these facts, only injectivity needs to be verified.

For the first, suppose

u.(al 'hl)I(cla)] = t[(a2Ib,) (cld)].

By Theorem 3, we then have:

(cIb, Ibi(aj'd" V cO)) = (a2b2lb2(a2"d' V cd)),

that is,

alblcd =a 2b2cd

k b(a'J' v cd) = bVa'a" V c).

Since bicd = aibicd V ai'bicd, (1) is equivalent to
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ab I cd = a2b2 cd

(2) al'bl(d -4 c) = a2"b2(d-4 c)
Now

(ai b)(cl d) (aibicdl a'bi V c'd V bid)

si nc (aibcd abi(d-; c) V c'd V bd).,

since

ai'bi, V c'd V bid = (ai'bj)(c'd)' V c'd V bid

[1= ab,(d' v c) V c'd V bid

= (a'b-)(d -4c) V c'd V bid.

11 Also, observe that

I[ai'b)(d-4 c) V c'd] V bid

= [(ai'b-d(d-4 c) V c'dJ V (bjd)[(ai'b-)(d-. c) V c'd]'

= [aj'bi(d -+ c) V c'd] V ajbicd,

with the last union being a disjoint one.

I Thus, (2) implies

dh. (a, Ibj(cld) = (a2Ib2)(cId),

and hence

((a1lb1)l(cld)) = ((a21b)Ji(cJd)).

To prove the second fact, suppose that

O[(al Ib) I (c, I b)] = O[(a2I b) I (c21 b)],

that is,

: • albc, I bcl) = (a2bc21 bc2),

or

{ albc, = a2bc2

("(cbcb = bc2
Now, (ail b)(ci[ b) =(aibci Ib). Thus (3) implies that

(a, Ib)(C, Ib ) = (a2lb)Cc2l b).
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Also, (3) implies that

(cIb) = (c2 Ib),
and hence

((allb)l(clib)) = ((a2Ib)I(c21b)).

- 8.2 Non-monotonic logics on conditionals
This section discusses non-monotonic entailment relations in conditional logic (CL).

In Chapter 6, the building block for a conditional probability logic (CPL) is the base space

U R IR together with Lukasiewicz's three-valued logic. Conditional probabilities were

introduced into the analysis mainly for purpose of reasoning under uncertainty. Of course,

.j other uncertainty measures could be used instead of probability (see for example,

Goodman, Nguyen and Rogers, 1990). This is basically a numerical approach to

freasoning with uncertainty in the sense that the uncertainty involved is taken into account

in a quantitative way. However, qualitative approach to reasoning can be carried out at

[ the level of CL. In view of the structure of RJR, qualitative notions will be compatible

with quantitative ones. The need to manipulate conditionals qualitatively is apparent in

problems such as combination of rules in expert systems. Our concern here is to extract

some non-monotonic aspects of CL as well as to discuss the possibility for building

non-monotonic entilment relations on R IR.
In the case of classical two-valued logic (C2 ), truth is the only primitive notion. As

stated in Section 6.3, the logical entailment relation 1- in C2 is defined in terms of

models (homomorphisms K2 from R to (0, 1), or equivalently, maximal filters of R).

In turn, 1 is expressed in terms of the order relation < on R by b -a if and only if

b5 <a. Now, since for c E R, bc: <b, we see that if b Ia then for ce R, bc l a. This

property of !- is referred to as "monotonicity," that is, roughly speaking, additional

evidence will not affect the validity of previous logical conclusions. In this sense, C2 is

called a monotonic deduction system, or the logic C2 is monotonic. In this case, the

monotonicity of 1- is due to the transitivity property of _. From an axiomatic approach

to entailment relations (for example, Gabbay, 1985), the monotonic I- satisfies

(i) reflexivity: for a, b e R, ab I, a,

(ii) monotonicity: if b 1 a, then for c E R, bc ' a, and

(iii) transitivity (or cut): if ab 1- c b I- a, then b I- c.

PL is also monotonic since probability is compatible with the order relation _< on

R. To capture common sense reasoning, some form of "non-monotonic" deduction is
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desirable. Roughly speaking, an entailment relation l-, in some logic, is non-monotonic if
in light of new evidence, previous logical conclusions may fail. Specificay, I is
non-monotonic if the monotonicity property (ii) above does not hold. The

non-monotonicity of a logical system refers precisely to an entailment relation in it. Thus,
a logic can have both a monotonic entailment and a non-monotonic one.

" Examine again the 1- in C2. In applications, given a set of data b1 .... b}, the
relation is used to express the fact that some a follows logically from the data,

[ written

[t, ...., n) a.

_L There are two procedures in this deduction process. First, combination of evidence is
taken as "conjunction" which is the ring multiplication. Second, l- is defined as _<. This

(partial) order relation on R is defined precisely in terms of A, via a, b eR, b < a if, by

definition, a t, b = b. Thus, in order to break the monotonicity of a system, one can either
consider combination of evidence differently or define - independently of _<. We will
return to this issue shortly.

We proceed now to clarify the statement that "probabilistic reasoning captures a

form of non-monotonic reasoning." We know that PL is monotonic. What makes
"probabilistic reasoning" non-monotonic depends on the framework of inference. Suppose

we consider the (partial, quantitative) entailment of an event a from a collection of

events (bl , ..., bn as a conditional probability P(alb I A ... A bn), denoted

[ b1, ..., bn} !- a with degree P(a bI A ... A ba). In other words, this partial entailment

relation is non-monotonic. Note that the two primitive notions involved here are truth and

* "probability.
It is possible to express the above aspect of non-monotonicity in a qualitative

fashion. Indeed, in the CL (Chapter 6), we have (alb) _ (cId) if and only if ab _< cd

and c'd<_ a'b, and

CL
(alb) 1- (cld)

is defined as

(ajb) (cjd).

Now, (a I b) and (a bc) are not comparable in general, since we always have abc _< ab,

but not a'b <_ a'bc, in general. On the other hand, the structure of RIR is such that
probabilities are compatible with operations on RIR, in particular P preserves the

(partial) order relation on RIR. Note also that, for the purpose of automation,
syntactic representation of !- is desirable.

Now from R (base space of C,), we go to R IR (base space of CL). The truth
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space of R R is (0, u, I). Note that, in the analysis of reasoning protesses in Al,
three-valued logics often surface, for example, in Computation Theory (McCarthy, 1967),

in the semantics of non-monotonic entailment (Sandewall, 1989), and in modeling of
default rules (Dubois and Prade, 1990).

Since the truth-space of R IR is a three-element set, one can consider various logics

on RJR. In other words, the class of all possible logics for RJR is that of all

three-valued logics. Theorem 2 of Section 3.4 established their correspondences with

logical operatorg and relations on R IR, that is, at the syntax level. Depending upon

interpretations of conditional objects and intuitive logical aspects of problems at hand,

different choices of three-valued logics can be made. For example, for reasoning in the

theory of computable partial recursive functions, non-commutative three-valued logics

might be appropriate (for example, Guzman and Squier, 1990; see also Section 3.4). In a

direction related to quantum logic, non-distributive systems can be looked for (for

example, Schay, 1968).

f I As far as commutative three-valued logics are concerned, the standard literature is

summarized in Rescher (1969). As stated earlier, different choices of connectives for

three-valued logics (that is, truth tables) lead to different logical operators on R IR. Thus,

for example, Lukasiewicz, Sobocinski and Bochvar's logics correspond respectively to our

operators in Chapter 3, Adams-Calabrese-Schay's operators, and an alternative system of

Schay. (See Section 3.5; also Dubois and Prade, 1989, 1990).

Consider first the case of Lukasiewicz' logic on RIR, corresponding to operators

AA, V of Chapter 3. Suppose data consist of conditional information, or conditionals are

viewed as production rules in expert systems. A simple way to express the fact that the

L. conditional information (or rule) (elf) follows logically from the data {alb, (cld)) is to

define i as {(a I b), (cId)) I- (e .t) if and only if

(aIb) A (cld) (elf).

This deduction process is exactly the same as in the case of C2 , and hence is monotonic.

As suggested by Dubois and Prade (1989), one way to destroy the monotonicity of ,' is

to modify it at the combination of evidence level. Instead of using Lukasiewicz'

conjunction A, one might replace it by another one, for example, Sobocinskis, (See

Chapter 3.) The reason is this. Since __ on R IR is defined as

(alb) (cld) if and only if (alb) A (cld) = (alb),

as on R, the transitivity of __ , coupled with this definition, is responsible for the

monotonicity of 1-. If A is replaced by Adams-Calabrese-Schay's conjunction A then

0 is non-monotonic, where



Non-monotonic logics on conditionals 253

((a b), (cld} ' (elf)

if, by definition,

(ajb) Ao (cjd) < (elf);

and where

alb) Ao (clad) = ((b' V a)(d' V c)lb V d).

Indeed. suppose (a b) (e I). By inspection, we ke that

Uj (alb) Ao (cld) (alb)

p does not hold, so that, in general, (e l) might not follow from ((alb), (cld)}.
I{ Note that, in view of Theorem 1, Section 3.3, the order relation < on R jR can be

defined by (aI j) (cId) if abacd and c'd a'b, that is, by using only the ring

structure of R, without calling upon A. For other order relations on R IR, see the recent

work of Calabrese (1990).

Another way to modify l to obtain non-monotonicity is suggested by Sandewall

(1989). First, to define "partial interpretations," Sandewall considered Kleene three-valued

base logic. By base logic, we mean truth tables of the three basic connectives "not," "and"

and "or". This is the same as Lukasiewicz's three-valued base logic (Rescher, 1969, p.

34). The main difference between the two logics lies in the concept of implication. Thus,

L. in our setting, R IR is equipped with operators ', A, and V of Chapter 3. The logical

cntailment relation is next defined by introducing a preference order on the set of models

(partial interpretations). For details, see Sandewall (1989). This is in line with the general

methodology advocated by Hawthorne (1988) for building non-monotonic logics. To

I ,chieve non-monotonicity, one should generahze the classical concept of models by taking

more primitive notions than just "trutl." In Hawthorne's words "there is more to the
meaning of a sentence than the determination of truth-values at possible worlds." One

t.L should also take " ntailment" as a primitie notion. That means an entailment relation

should be autonomous with respect to truth-values semantics. Then, as in the case of

U "truth" as a pmiriti.'e notion, once an entailment concept has been taken, one will specify

its "senantic rule" (in the same way that truth tables of logical connectives specify how

truth values of compound formulae are assigned) governing deduction processes. For an

axiomatic approach to non-monotonic entailment relations, see Gabbay (1985). Recent

relevant papers on non-monotonic logics include Grosof (1988), Bibel (1986), McLeish

(1988).
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[8.3 Operations on cosets of regular rings.

The algebraic sturctures more general than Boolean rings that are pertinent for our

" considerations of conditional events, iterated conditionals, and so on, seem to be lattices of

some sort rather than more general rings. For example, in Chapter 4, we extended R,

which is both a Boolean ring and equivalently a Boolean lattice, to the space RIR of

conditional events. This space is a Stone algebra, which is a lattice more general than a

Boolean lattice. It is not a ring. That is, R IR generalizes R as a lattice, not as a ring.

-. There is the possibility, however, of generalizing this process of going from R to R IR

by starting with a ring more general than a Boolean one. Now RJR is the set of all

{j cosets of principal ideals of R, and the operations between its elements were defined to be

those induced by tl operations on R. That is, if A and B are subsets of R, and' is

[ any binary operation on R, then, by definition, A*B = {ab : a G A, b e B). In the Boolean

.ang case, addition and multiplication between cosets yielded cosets. In fact, for a, b E R,

and ideals I and J of R,

(a + I) + (b + J) = (a + b) + (I + J),

and (a + I)-(b + J) = ab + Ib+aJ+IJ.

These facts were thoroughly discussed in Chapter 3. These operations on R IR were the

basis of its development. While the set addition of cosets is a coset holds in any ring and
is easily verified, the fact that the set product of cosets is a coset is unexpected and

non-trivial. The question naturally arises as to the generality of this phenomenon. In

particular, for what rings does it hold? In this section, we will show that it holds for
commutative von Neumann regular rings. In Boolean rings, every element is an

idempotent, and these regular rings are good candidates for such an extension because of

the abundance of idempotents in them. Our principal result is Theorem 4, the extension of

Li Theorem 1 of Section 3.2 to these more general rings.

L! Definition 1. A commutative ring R is (von Neumann) regular if it has an identity, and if

for each x E R, there is a y R such that xyx = x.

We will call these commutative von Neumann regular rings simply regular rings. Here

are some examples of regular rings:

(1) Any Boolean ring is a regular rin,

(2) Any field is a regular ring.
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(3) The Cartesian product of any family of regular rings is a regular ring. The ring

operations in such a product are, of course, componentwise.

(4) Quotients of regular rings are regular rings. That is, if R is a regular ring and

I is an ideal of R, then RI is a regular ring.

(5) p-rings are regular rings. These are rings such that for some prime p and every

element x,px= 0 and xP = x. Boolean rings are those for which p = 2.

For an element x in a regular ring, the element y such that xyx x2y x is not

unique since, for example, in a Boolean ring one may take y to be x or 1, the element

[1 xy is unique. We denote it x°.

Lemrma 1. Let R be a regular ring. Then for all x e R,

( x is unique,
(ii) x' is an idempotent, and

f(iii) Rx = Rxo.

Proof. For (i), if (xy)x = (xz)x = x, then xy = xzxy = xz. For (ii), (xy)(xy) =

(xyx)x = xy. Finally, for (iii), clearly R(xy) c Rx. If a = rx E Rx, then

a = (rx)(xy) e R(xy), whence Rx0 = Rx. n

Theorem 1. Let R be a regular ring. The following hold.

(i) For any principal ideal Ra of R, Ra = Re for a unique idempotent e.

(ii) 12 = I for any ideal I of R.

(iii) Ra2 = Ra for any aER.

(iv) Finitely generated ideals of R are principal.

(v) For ideals I and J of R, we have IJ= {ij:iE IjJ) is an ideal.

Proof. To prove (i), Ra = Ra* with a' idempotent by Lemma 1. If Re = Rf,
with e, f idempotents, then e = rf and f = se for suitable elements r and s of r, and

e = rf = rse = rsef = f.

For (ii), clearly 12C I. If iEI, then i = i~i EP. Now (iii) follows since

Ra2 = RaRa = Ra by (ii). To get (iv), we need that Raj + Ra2 + ... + Ran = Ra for

some a E R. We may assume that each ai is idempotent. Now,

Raj + Ra2 = R(al + a2 - aja2)
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since ai(al + a2 - ala2) = ai for i = 1, 2, whence Rai + Ra2 c R(al + a2 - aja2). The

other inclusion is easy.

Finally, to prove (v), IJ is closed under multiplication by any element a of R

since a(if) = (ai)j with ai e L, j e J. We need i1j1 + ... + ijn e 1J for ik e 1 Jk e J,

k =1,...,n. From (iv), let Rjj + Rj2 + ... + Rjn = Rj. Then

iiii + ... + d = (iiri)j + ... + irj

' for suitable rk, k = 1,..., n.

.! The following is a characterization of regular rings in terms of products of cosets of

the same ideal.

Theorem 2. Let R be a commutative ring with identity. Then R is regular if and only if

the set product of any two cosets of an ideal I is the product of those two cosets asF' elements of the quotient ring 1W. That is, R is regular if and only if

. (a + 1)(b + I) = ab + I

for each ideal I of R, and a, b e R.

Proof. If the equality above holds, then taking a = b = 0 yields 12 1 for all

{ ideals I. Taking I = Rx gets RxRx = Rx = Rx 2 , so that x = yx2 for some y in R.

Thus R is regular. Now assume that R is regular. We need

(a + l)(b +1) = ab +1,

or that

((a + i)(b +J) : i, j 1} = (ab + ib + aj + ii: i,j E I)

S=(ab+k'ke I).

Clearly, (a +1)(b +) g ab + I. We need to write ab + k in the form ab + ib + aj + ij.

Letting i = k"(1 - a) and j = ka(k - b + ab) accomplishes that.

Note that Theorem 2 yields the ideal theoretic characterization of regular rings,

namely that a ring is regular if and only if 2 = 1 for all ideals I.

We now turn to the problem of showing that the set product of two cosets of ideals

of a regular ring is again a coset. Specifically, we will show that
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(a + 1)(b + J) =ab + al + bI + IJ.

To do this, we investigate the quantity

K(a,b, I,J) = (aj+bi+ij:ie LjeJ).

We have

(a + 1)(b + J) = ab + aJ + bI + IJ = ab + K(a, b, I, J).

In general, K(a, b, I, J) is not an ideal of R. However, if we let

SK(a,b,I,J)= o(IJ)+aJ+bI

where o(IJ) denotes the ideal generated by IJ, then Ko(a, b, I, J) is always an ideal,

and, moreover, we have:

Lemma 2. Let R be a commutative ring with unit 1. Then for a, b E R, and I, J ideals

of R,

Sal v bI c K(a, b, 1, J) c Ko(a, b, 1 J) = o(IJ) + K(a, b, I, J).

Proof. Since 0 is in any ideal, it follows that

aJ v bl c K(a, b, I, J).

Next, if i e I and jE J, then ij E o(IJ), hence
r!
L.K(a, b, I, J) .Ko(a, b, I, J).

ClearlyCeryo(IJ) + K(a, b, , J) cKo(a, b,I,J).

!L Conversely, let k F o(IJ). We have

aj + bi + k = (k -ij) + (aj + bi + ij) E o(IJ) + K(a, b, , J).

Lemma 3. Let R be a commutative ring with identity. The following are equivalent.

(i) For a, b e R, and I, J ideals of R, K(a, b, I, J) is an ideal.

(ii) For a, b E R, and I, J ideals of R, K(a, b, I, J) = Ko(a, b, , J).

(iii) o(IJ) c K(a, b, I, J), for a, b E R, and I, J ideals of R.
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[ Proof. That (ii) implies (i) is obvious. Assume (i). Then for i e I, j e J, we have 9
ij = (ij + ja + bO -(a + bi) K(a, b, I, J),

since

aJ c K(a, b, I, J), bI c K(a, b, I J).

Thus (i) implies (iii). Assume (iii). In view of Lemma 2, it suffices to show that,

Ko(a, b, I,J)cK(a,b, ,J).

IFor this purpose, let aj + bi + k E Ko(a, b, I, J). Then

oaj + bi + k = (aj + bi + if) + (k - ij)

with k - i] E a(!). Now, by hypothesis, (iii) holds for any a, b in R. Thus taking

c = a + i, d = b + j, we have o(L) c K(c, d, 1 J). That is, k -ij is of the form

(a + i)Jl + (b + J)ij + idjj

for some il e I, E J. Hence

aj + bi + k = aj + bi + ij + (a + zi)] + (b + j)i1 + i1j,

= a(j +ji) + b(i + ij) + ij + ij, +ji, + i1j1

= aq + jj) + b(i + ij) + (i + ij)(j + jj) E K(a, b, I, J).

L.

Theorem 3. Let R be a regular ring. Then for a, b E R, and ideals I, J of R,
I
I (a +I)(b +J) = ab+ aJ+bI+IJG e5(R).

Proof. By Theorem 1, o(1J) = IJ. But IJ = I n J. Clearly, IJ c I n J. Conversely,

if a E I n J, then since R is regular,

a = (aaO)a E IJ.

Thus if reICiJ,

i = (rr0)(1 - a) c 1, 9
j = (rr0)(r - b + ab) E J,

and
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i. r = aj + bi + ij e K(a, b, I, J),

so that

c o(IJ) c K(a, b, I, J).

In view of Lemma 3, we then have

K(a, b, I, J) = Ko(a, b, 1 J) = a + bI + IJ. o

We have just seen that if R is a regular ring, then set-extenstion operations of

addition and multiplication are operators on the space f'(R) of all cosets of R, extending

coset operations on each fixed quotient ring. Of course, by Theorem 2, this property is

ll. unique to regular rings. However, it is not known which rings have the property that

products of cosets are cosets, or indeed if having this property is unique to commutative

regular rings.

To extend Theorem 1 of Section 3.2 to regular rings, we define analogs of ' and V

for regular rings. For a, b e R, let

at= 1-a,

and

a V b = a + b - ab.

These operations are extended to subsets of R as usual. For A, B c R,

A' = (1-a:a6R),

AVB= (a+b-ab:a6A,bEB).

One should note that A V b is not

1.1 A + B-AB = (a + b-cd: a,cE A,b,d6 B).

LI' However, DeMorgan laws do hold.

CAB)" =A' VB',

(A V B)' = A'B'.

The following theorem is a generalization of Theorem 1 in Section 3.2.
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Theorem 4. Let R be a regular ring. Then for a, be R, and ideals I, J of R,

(z) (a+)+(b+J)=(a+b)+(I+J),

[. (ii) (a+I).(b+J)=ab+aJ+bI+IJ,

(iiO (a + 1)' = a' + I,

(iv) (a+I)V(b+J)=aVb+(a'J+b'I+IJ).

V Proof. (i) and (ii) have been proved previously. (iii) is efsy. For (iv), we use one

of the DeMorgan laws above and (ii). We have

(a +1) V (b + J) =((a' +I)(b' + J))'

" -1- (a'b' + a'J + b'I + IJ)

=a Vb + a'J+ b'I+I+ Y

The difficult part of Theorem 4 is (ii). It was proved by inspecting the quantity

F K(a, b, I, J). There is a more direct proof, which goes as follows. First, assume that I

and J are principal ideals. Let I = Re, J = Rf with e, f idempotents. It suffices to

{jj solve the equation

ij + ib + ja = i1j1 + i2b + j 2a

for ie , j J, where il, i2 E I;Jl, j2 E J. Letting

Si = (x -a)ef + i2(1 -. )e,

j= (I- b)ef + j2(1- e)f

where x = i1j1 + i2b + j2a + ab, yields a solution.

For the general case, by Theorem 1, the ideal Ri + Ril + Ri2 is a principal ideal

Re, and R1 + Rjj + Rj 2 is Rf with e, f idempotents. Thus, the principal ideal case

finishes the proof.

There are other analogs for ' and V on a regular ring than the ones we defined

LI above. An alternative is this. In analogy with the Boolean case, define, for a, b E R,

(alb) = (XE R :xb = ab).

Then, assuming throughout that R is regular,

(alb) = a + R(I - b°).

Indeed, first observe that
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9 a +R( - b) = ab0 +R( - b).

This can be seen as follows. If x e a + R(I - b), then

x = a + r(1 - b0)

=I i - a -b+ b ) + r(1-b)
= abo + (a + r)(I -b)

which is in abo + R(! - b°). Conversely, for x = ab* + s( - b0),

1x = a(1 - 1 + b°) + s(1 - b°)

u =a+(s-a)(1-b0 )

which is in a + R(1- b°).
H Now let x e (a b), that is, xb = ab. Multiplying through by b° yields xb° = ab° .

Thus

x = x(I - b° +1b)

= x(1 - b° ) + xb°

Hi =x(! - b°) + ab° ,
which is in

ab° + R(1 - b° ) = a + R(1 - b*).

[ Conversely, if x = aW° + r(1 -1) for some r E R, then

xb =abob + r(1 - b)b =ab. t

The fact that [x R: xb =ab) = a + R(1- b° ) rather than a + R(1- b) suggests

Li that one might want to define ' on regular rings by a' = 1 - a° rather than 1 - a. In
that case, in order for DeMorgan's laws to hold, and in analogy with the Boolean case, one

Lshould define V by

a V b = (a' A b')' = (a'b')'

= ((I - a0)I - b*))"

=1 - (1 - a' - Y + a0b0 )0

=a o + b° - ab o.
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With respect to these operations, a regular ring R satisfies the following properties.

(1) a(ab V ac) = ab V ac and ab V c = (a V c)(b V c).

(2) (aVb) =a'b and (ab)' =(a' Vb').

(3) a(aVb)=aandaVaba*.

['] The verification of these properties is completely routine. The upshot of property (1) is

that V distributes over products, but not the other way around. Property (2) asserts !hat

DeMorgan's laws hold. Property (3) is one absorption law, and the faiiure of the other.

Si There does not seem to be a way to define a partial order on R in terms of

these operations so that R is a lattice. In fact, defining < by a < b if a = ab, or if

I a = ab° does not yield a partial order. Anti-symmetry is not achieved. For example, for

the case a < b if and only if a = ab , if a < b, and b < a, then a' = bc, but a : b

[unless a and b are idempotents. Thus, this alternate definition of ,and consequently of

V, on R, utilizing more heavily the idempotent part of R, does not result in a particularly

'I tractable algebraic system on which to base a logic.

It is instructive to see what Theorem 4 becomes with these alternate definitions of "

I 1and V. Of course parts (i) and (ii) do not change. Some properties of these new

I . operations when extended to cosets follow. Properties (5) and (6) are the analogs of parts

(iii) and (iv) of Theorem 4 are these.

(4) (a + Rb)° = R~b° + a~b'.

V (5) (a + Rb)' = R~b° + a'b'.

(6) (a + Rb) V (c + Rd) = R°(bd V a'd V bc') + (ab' V cd').

To give a better appreciation of the analogs, we present a proof of (5). If x is an

element of a regular ring R, then there is an element y such that xyx = x. Denote such

, .' an element by xt. Thus xtx = x. Now note the following equalities.

a + b = a + bb° = ab0' + (a + b)bO,

(atb°' + (a + b)tb°)(ab° ' + (a + b)b0) = a0bo' + (a + b)Ob °,

and

(a~b0' + (a + b)0b°)(ab0' + (a + b)b °) = a + b.

Thus
(a + b)0 = a0bo' + (a + b)Ob0.
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"NoT=o ti.he ealhlity

(a + Rb)' =ROb + a'b'.

We have
1"
V (a + rb)' = 1 - (a + rb)°

= 1 - aO(r"b°)' - (a + rb)OrOb0

[j -1 - aO + aor'b0 - (a + rb)Orlb°

-1-a ° - b° + aOb0 + b° - aOb 0 + aOrb 0 - (a + rb)0r~b0

S(1- a*)(1 - b°) + (1- a- aO - (a + rb)0 r0 )bO.

IIt is readily checked that the quantity

1 - a° - a~r" - (a + rb)Orr)

is idempotent, so we have the inclusion

(a + Rb)' ;R Ob° + a'b'.

Now let eb° + a'b' E ROb + a'b', with e idempotent of course. It suffices to
solve the equation

eb° + a'b' = 1 - (a + sb)0,
or the equation

(a + sb)° = a°(1 - b0) + (1 -e)b°

for s. Setting

x = a0 (1 - b° ) + (1 - e)b0,

and noting that x is idempotent, means that we need s such that

x(a + sb) = (a + sb),

and

x = y(a + sb)

for some y. Letting

s = - abf + (1 - e)bi
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and

y =at(1 - b°) + b°(1 - e)

does the trick.

For further work on developing algebraic properties for conditionals on regular

rings, see Goodman and Nguyen (1990).

8.4 Miscellaneous issues and open problems

It is time to summarize our work and to discuss open problems.

The topic of conditioning is perhaps very old since it is central to empirical sciences.

However, the concept of "measure-free" conditioning has not been studied seriously due to

a lack of motivation. It is the fundamental aspect of probabilistic inference in expert

[systems that motivated us to look again at this topic and to formulate a rigorous theory of

conditioning.

UThe subject of probabilistic inference in expert systems has attracted considerable

attention among researchers in artificial intelligence and has caused much discussion.

Several fundamental ideas and methodologies relating to conditioning have been proposed,
most of which were highly appealing on common sense grounds. However, serious

foundational problems have been encountered, as has been the case in many other areas of

science. Accordingly, clarification of conditioning at the basic level is necessary. The

purpose of this monograph is to introduce a rigorous theory of measure-free conditioning
[_ which can be utilized in inference procedures in intelligent machines. The theory

developed here concerns mainly basic mathematical objects such as ordinary sets and
probability measures. It can be regarded as a first step that will lead to extensions in

various directions of interest.

Basically, this work is an effort to provide a better understanding of the logics of

conditionals. It is an attempt to bring conditional logic closer to the level of

underst.,nding as that of classical logic. Such an understanding is needed since more and
more AI techniques rely on formal methods in logic to guide programming in intelligent

machines. Logics can be viewed as knowledge representation languages in which facts,
rules, and inference can be stated and manipulated.

Uncertainty modeling is a tricky business in Al. Unlike the term "conditionals" used

in classical two-valued logic, where "conditional" is referred to as material implication,

conditionals or implicative statements used in this text need to be modeled properly in the

context of reasoning with uncertainty. A "measure-free" approach seems to be the most
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objective way to lay the first brick. However, we are all biased by the popular approach
to uncertainty modeling, namely, probability theory, in which there is a fundamental

concept of probabilistic conditioning. We have tried to revise the work of others
1, concerning conditioning concepts to be compatible with probability theory. We provided

an axiomatic approach to conditionals, and built a conditional logic. This should stimulate
further work to improve it and to extend it towards applications. In a time of fast
advances in AI technologies, we hope that it is useful to have a monograph on the subjct,

reven at a tentative level. Many issues remain to be re-examined and much further work is
needed. We now discuss some of these issues and some open problems.

Li A. Conditionals on more general algebraic systems

I1 The axiomatic approach in Chapter 2 led to the coset form for conditionals on

Boolean rings. This mathematical representation of implicative statements is satisfactory

in the sense that it reflects earlier thoughts on the concept of conditioning in logic, and
coincides with that derived from other work on the subject. There are a number of elegant
characterizations of conditional prcbability without any reference to conditional events,

jsuch as Aczers generalization of Renyi axioms (Aczel, 1966) or Cox's approach (Cox,
1961). However, DeFinetti (1974) and, more generally, Lindley (1982), characterized
conditional probability via the "Dutchbook," or equivalently, uncertainty decision game.
This does use (tacitly) DeFinetti's conditional event indicator function (see also Goodman
et al (1990) for a modification of certain of Lindley's conclusions concerning the

inadmissibility of uncertainty measures). In connection with these results, it is of some
* interest to attempt to relate all of these characterizations with the standard probability

evaluation we use, namely P((a I b)) = P(a I b).
The next problem has been: once the concrete conditional space R IR is obtained,

. what are the logical operators on it? From a "syntax" viewpoint, this is an extension

problem. The operations on the Boolean ring R need to be extended to operators on
, RIR which capture, in some reasonable sense, aspects of combination of evidence in

ruled-based systems. In Chapter 3, the approach is algebraic. It is motivated by an

* interesting problem in ring theory, namely, how to extend appropriately coset operations

on each quotient ring of R to R IR? It turns out that set-extension operations provide a
natural solution to this extension problem. In this way, RIR becomes a Stone algebra

(Chapter 4).
All that was done for Boolean rings, for mathematical interest as well as for

applications. Conditionals on more general algebraic structures now need to be
investigated. In Chapters 7 and 8, we have touched upon two generalizations: fuzzy sets

and re-ular rings.
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In carrying out the construction of R IR from R for R a commutative regular ring

i, rather than a Boolean ring, problems arise. We can certainly let RIR be the set of all
cosets of principal ideals of R. But just how they should manipulated in order to provide
suitable generalizations of the Boolean case is not settled. It is not totally clear what a
conditional event should be in this context. Should (a I b) be the coset a + R(I - b) or
the coset a + R(1 - b°)? In either case, since products and sums of cosets are cosets, they

can be added and multiplied, but there are choices to be made for ' and V. As
mentioned earlier, it seems not to be known which rings have the property that products of

cosets are cosets, and of course we are only considering the commutative case.

UB. Three-valued logics of conditionals

Various open issues have been suggested by Schay (1968, p. 343-344) as far as

• RIR, viewed as the space of generalized (three-valued) indicator functions, is concerned.

Viewing the conditional space RIR as some specific algebraic structure, for example, as

[ a Stone algebra, "probability-like" measures on it should be formulated in a more thorough
measure theoretical basis. This is somewhat similar to the situation in quantum

probability (see, for exmple, Gudder, 1988) in which the domain of a generalized measure

is an algebraic structure slightly more general than the usual concept of a-algebra, namely

a a-additive class.
On the other hand, one might ask what would R IR be, as an algebraic structure, if

instead of using Luikasiewicz's three-valued logic (corresponding to logical operations on

R IR as developed in Chapter 3), one started with either Schay's first or second system, or

with Sobocinski's or Bochvar's three-valued logic?
In Chapter 3 we established the connection between logical operations on the

conditional space R IR and truth tables in three-valued logic. It might be interesting to

explore the situation in n-valued logics (n > 3). Logical operators on R IR, as developed
in Chapter 3, lead to a well-known three-valued logic, namely that of Lukasiewicz. The

& algebraic structure of R IR so obtained is a modification of Koopman's non-totally
comparable conditional qualitative probability structure, (Koopman (1940, 1964)).

Referring to the excellent analysis and summary by Fine (1973, p. 183-196), the order
,elation on R IR, as defined in Chapter 3, can be seen to satisfy essentially all but two of
Koopman's axioms. Additional work should be carried out for this aspect of conditional

event algebra, and should focus on the basic equivalence (not just implication) between

the partial order on R IR and the numerical partial order on corresponding conditional

probabilities. By proving that there is a bijection between the class of all three-valued

logics and logical operators on RIR, the search for operators on RJR might begin by

examining the class of all possible three-valued logics. For example, it tums out that
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Schay's system of logical operators on R IR corresponds to Bochvar's three-.valued logic,

while Schay's other system (as well as Adams' and Calabrese's) corresponds to
Sobocinski's. this should be viewed as a healthy situation in reasoning with uncertain

I Iconditional data, rather than a divergence of opinion. This is similar to the debate about
choices of uncertainty measures in AI, and to the choice of logical systems in fuzzy logic.

' For the latter, each logical system in fuzzy logic is modeled by a triple (N, T, S), where
N is a negation operator, T is a t-norm and S its dual t-conorm. The art of modeling is
delicate. For example, based on three-valued logic, a form of fuzzy conditionals was
adopted in Chapter 7. The choice of the copula min was suggested since it is the simplest
one. Other choices can be motivated on an empirical basis. For emple, if "conjunction"
is to be modeled mathematically in a given problem, and if there is some randomness
involved in the gathered data, one can pick a copula for a r. :orm, and view the modeling

I problem as a non-parametric statistical estimation problem, -nd estimate the joint
distribution function from data on marginals.

SI This seems appropriate in problems such as modeling activation functions in neural
networks. Indeed, basically the architecture of an artificial neural network can be placed
within the theory of approximations of functions of sev-ral variables. (See, for example,

Lorentz, 1966.) More specifically, it is related to Kk hmogorov's theorem on representation

of functins of several variables by superpositions of functions of fewer variables (Lorentz,
1966, chapter 11, or Vitushkin, 1978). As such, statistical estimation procedures for
-emi-parametric models can be used as learning rules. It is interesting to note that the
popular back-propagation training algorithm in neural networks bears some close
relationship with backfittng procedures in projection pursuit regression (see Huber, 1985).
It seems that a fundamental question in the field of neural networks is this. Given a class
of functions, not necessarily completely specified.. how to design an efficient artificial

neural retwork to "process" any member of this class?
In a recent personal communication, Hestir (1990) showed that extreme points of the

space of copulas (identified as probability measures on the unit square with uniform
*, nrarginals) can be characterized, so that _he above estimation problem might be feasible.

The space of copulas is a compact, convex space with the topology of weak convergence
of measures.

C. Non-monotonic entailments on conditionals

When probability is used as a quantification of uncerainty, an extension of
Probability Logic is needed for R IR. The resulting logic is called a Conditional
Probability Logic kiChapter 6). Conditional Probability Logic should be extended from
:'e sentential level to first order predicate calculus.



268 Iterated conditioning and miscellaneous issues

At a pragmatic level, non-monotonic entailment relations need to be specified as far

as common sense reasoning is concerned. Some aspects of this problem were discussed in

this Chapter. This difficult and important issue in mathematical logic should be further

F" investigated. See also the recent work of the group Lea Sombe (1990).

I:
(. D. Hlgber order conditioning

Once conditionals on Boolean rings are defined, it is natural, at least from a

mathematical standpoint, to consider conditionals of conditionals. See, however, Pfanzagl

(1971). In Chapters 7 and 8, we have touched upon this problem, both from the syntactic

*" and semantic viewpoints.

The material in Section 8.1 is incomplete. Conditionals are defined on the space

R IR, yielding the space of iterated conditionals (RIR)I(RIR). The basic result is

, Corollary 1 in that section, asserting that they consist of intervals in the Stone Algebra

RIR. This relied heavily on the fact that RIR is relatively pseudo-complemented. This

[I relative pseudo-complementation played the role of material implication. There, we also

touched on a way to assign "probabilities" to these iterated conditionals. An algebra of
f these iterated conditionals has not been developed. No binary or unary operations on

(RIR) (RIR) were defined and investigated. Much work remains to be done to clarify

the issue and to obtain a more satisfying theory of higher-order conditioning. Doing so

could be rewarding, and result in a tractable an important algebraic system, not only for its

,mo modeling of higher order conditioning, but for its possible connections with higher order

logics.

1., E. Fuzzy conditionals and probability qualification

In view of the success of fuzzy logic in AI, we have devoted the entire Chapter 7 to

the extension of ordinary conditionals to the fuzzy case. Our semantic approach to fuzzy

conditionals is novel. It is motivated by a connection between membership functions and

random sets, namely randomization of level-sets associated with membership functions of

fuzzy sets. The simplest copula min was chosen to define membership functions of fuzzy

I 2 conditionals, which turn out to be interval-valued fuzzy sets. As in fuzzy logic, other

choices of copulas are possible. It might be of interest to compare fuzzy conditionals as

perceived here with various concepts of conditional possibility distributions in the

literature. Also, inference with fuzzy conditionals, for example fuzzy implication

operators, should be investigated further for applications. See, for example, Smets, 1990;

Goodman, 1990. i
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*/ F. Modal logic

Since conditioning was shown not to be just a primitive concept, best described by

V" axioms, but rather can be analyzed further through the power class structure of the space
of conditionals, one can inquire whether other model forms (see, for example, Rescher,

1968) can be analogously investigated, including deontic, alethic and voluntative modes,

among others. This could use reduction of such forms to conditionals, using a synthetic

approach as in the analysis of the latter, not a top-down external approach as taken by

Palmer (1986) nor the formal logical stand of Searle and Vanderveken (1985). See also

Ruspini (1989).

G. Non-additive uncertainty measure

fl As mentioned several times in this monograph, especially in Chapter 5, conditionals,

as cosets of Boolean rings, were derived under the condition of compatibility with

Pl conditional probability. Here, Lewis' Triviality Result plays an important role. It is clear

that this result depends heavily on the additivity property of probability measures. If

probability measures, viewed as set functions, are generalized to, say, Dempster-Shafer's

belief functions, which are non-additive set functions, then Lewis! Triviality Result does

not hold. Indeed, as pointed out in Chapter 5, material implication on Boolean rings is

compatible with conditional belief assignments. Belief functions are not the only

non-additive set functions considered in the literature of artificial intelligence. Fuzzy

I. measures (for example, Sugeno, 1974), or decomposable measures with respect to

t-conorms (for example, Weber, 1984) are non-additive set functions. Although, in many

j cases, non-additive measures can be transformed into additive ones, in the spirit of

Lindlet's admissibility (Lindley, 1982; Goodman, Nguyen, and Rogers, 1990), an analysis

of conditional events compatible with a given class of uncertainly measures might be of

interest, as a way to specify, at the syntex level, the "non-standard" logics underlying the

semantic aspects when reasoning with various types of uncertainty.

L
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